MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp2 Structured version   Visualization version   Unicode version

Theorem dfgrp2 17447
Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 17425, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp2.b  |-  B  =  ( Base `  G
)
dfgrp2.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp2  |-  ( G  e.  Grp  <->  ( G  e. SGrp  /\  E. n  e.  B  A. x  e.  B  ( ( n 
.+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
Distinct variable groups:    B, i, n, x    i, G, n, x    .+ , i, n, x

Proof of Theorem dfgrp2
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 17446 . . 3  |-  ( G  e.  Grp  ->  G  e. SGrp )
2 grpmnd 17429 . . . . 5  |-  ( G  e.  Grp  ->  G  e.  Mnd )
3 dfgrp2.b . . . . . 6  |-  B  =  ( Base `  G
)
4 eqid 2622 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
53, 4mndidcl 17308 . . . . 5  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
62, 5syl 17 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
7 oveq1 6657 . . . . . . . 8  |-  ( n  =  ( 0g `  G )  ->  (
n  .+  x )  =  ( ( 0g
`  G )  .+  x ) )
87eqeq1d 2624 . . . . . . 7  |-  ( n  =  ( 0g `  G )  ->  (
( n  .+  x
)  =  x  <->  ( ( 0g `  G )  .+  x )  =  x ) )
9 eqeq2 2633 . . . . . . . 8  |-  ( n  =  ( 0g `  G )  ->  (
( i  .+  x
)  =  n  <->  ( i  .+  x )  =  ( 0g `  G ) ) )
109rexbidv 3052 . . . . . . 7  |-  ( n  =  ( 0g `  G )  ->  ( E. i  e.  B  ( i  .+  x
)  =  n  <->  E. i  e.  B  ( i  .+  x )  =  ( 0g `  G ) ) )
118, 10anbi12d 747 . . . . . 6  |-  ( n  =  ( 0g `  G )  ->  (
( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  <->  ( ( ( 0g `  G ) 
.+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  ( 0g `  G ) ) ) )
1211ralbidv 2986 . . . . 5  |-  ( n  =  ( 0g `  G )  ->  ( A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  <->  A. x  e.  B  ( ( ( 0g
`  G )  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  ( 0g `  G ) ) ) )
1312adantl 482 . . . 4  |-  ( ( G  e.  Grp  /\  n  =  ( 0g `  G ) )  -> 
( A. x  e.  B  ( ( n 
.+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  <->  A. x  e.  B  ( ( ( 0g
`  G )  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  ( 0g `  G ) ) ) )
14 dfgrp2.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
153, 14, 4mndlid 17311 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( ( 0g `  G )  .+  x
)  =  x )
162, 15sylan 488 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( 0g `  G )  .+  x
)  =  x )
173, 14, 4grpinvex 17432 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E. i  e.  B  ( i  .+  x
)  =  ( 0g
`  G ) )
1816, 17jca 554 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( ( 0g
`  G )  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  ( 0g `  G ) ) )
1918ralrimiva 2966 . . . 4  |-  ( G  e.  Grp  ->  A. x  e.  B  ( (
( 0g `  G
)  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  ( 0g `  G ) ) )
206, 13, 19rspcedvd 3317 . . 3  |-  ( G  e.  Grp  ->  E. n  e.  B  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )
211, 20jca 554 . 2  |-  ( G  e.  Grp  ->  ( G  e. SGrp  /\  E. n  e.  B  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
223a1i 11 . . . . . 6  |-  ( ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  ->  B  =  ( Base `  G )
)
2314a1i 11 . . . . . 6  |-  ( ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  ->  .+  =  ( +g  `  G ) )
24 sgrpmgm 17289 . . . . . . . 8  |-  ( G  e. SGrp  ->  G  e. Mgm )
2524adantl 482 . . . . . . 7  |-  ( ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  ->  G  e. Mgm )
263, 14mgmcl 17245 . . . . . . 7  |-  ( ( G  e. Mgm  /\  a  e.  B  /\  b  e.  B )  ->  (
a  .+  b )  e.  B )
2725, 26syl3an1 1359 . . . . . 6  |-  ( ( ( ( n  e.  B  /\  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  /\  a  e.  B  /\  b  e.  B )  ->  (
a  .+  b )  e.  B )
283, 14sgrpass 17290 . . . . . . 7  |-  ( ( G  e. SGrp  /\  (
a  e.  B  /\  b  e.  B  /\  c  e.  B )
)  ->  ( (
a  .+  b )  .+  c )  =  ( a  .+  ( b 
.+  c ) ) )
2928adantll 750 . . . . . 6  |-  ( ( ( ( n  e.  B  /\  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  /\  ( a  e.  B  /\  b  e.  B  /\  c  e.  B ) )  -> 
( ( a  .+  b )  .+  c
)  =  ( a 
.+  ( b  .+  c ) ) )
30 simpll 790 . . . . . 6  |-  ( ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  ->  n  e.  B )
31 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
n  .+  x )  =  ( n  .+  a ) )
32 id 22 . . . . . . . . . . . 12  |-  ( x  =  a  ->  x  =  a )
3331, 32eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
( n  .+  x
)  =  x  <->  ( n  .+  a )  =  a ) )
34 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
i  .+  x )  =  ( i  .+  a ) )
3534eqeq1d 2624 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
( i  .+  x
)  =  n  <->  ( i  .+  a )  =  n ) )
3635rexbidv 3052 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( E. i  e.  B  ( i  .+  x
)  =  n  <->  E. i  e.  B  ( i  .+  a )  =  n ) )
3733, 36anbi12d 747 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  <->  ( ( n 
.+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  n ) ) )
3837rspcv 3305 . . . . . . . . 9  |-  ( a  e.  B  ->  ( A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  ->  ( (
n  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  n ) ) )
39 simpl 473 . . . . . . . . 9  |-  ( ( ( n  .+  a
)  =  a  /\  E. i  e.  B  ( i  .+  a )  =  n )  -> 
( n  .+  a
)  =  a )
4038, 39syl6com 37 . . . . . . . 8  |-  ( A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  -> 
( a  e.  B  ->  ( n  .+  a
)  =  a ) )
4140ad2antlr 763 . . . . . . 7  |-  ( ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  ->  ( a  e.  B  ->  ( n 
.+  a )  =  a ) )
4241imp 445 . . . . . 6  |-  ( ( ( ( n  e.  B  /\  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  /\  a  e.  B )  ->  (
n  .+  a )  =  a )
43 oveq1 6657 . . . . . . . . . . . . 13  |-  ( i  =  b  ->  (
i  .+  a )  =  ( b  .+  a ) )
4443eqeq1d 2624 . . . . . . . . . . . 12  |-  ( i  =  b  ->  (
( i  .+  a
)  =  n  <->  ( b  .+  a )  =  n ) )
4544cbvrexv 3172 . . . . . . . . . . 11  |-  ( E. i  e.  B  ( i  .+  a )  =  n  <->  E. b  e.  B  ( b  .+  a )  =  n )
4645biimpi 206 . . . . . . . . . 10  |-  ( E. i  e.  B  ( i  .+  a )  =  n  ->  E. b  e.  B  ( b  .+  a )  =  n )
4746adantl 482 . . . . . . . . 9  |-  ( ( ( n  .+  a
)  =  a  /\  E. i  e.  B  ( i  .+  a )  =  n )  ->  E. b  e.  B  ( b  .+  a
)  =  n )
4838, 47syl6com 37 . . . . . . . 8  |-  ( A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  -> 
( a  e.  B  ->  E. b  e.  B  ( b  .+  a
)  =  n ) )
4948ad2antlr 763 . . . . . . 7  |-  ( ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  ->  ( a  e.  B  ->  E. b  e.  B  ( b  .+  a )  =  n ) )
5049imp 445 . . . . . 6  |-  ( ( ( ( n  e.  B  /\  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  /\  a  e.  B )  ->  E. b  e.  B  ( b  .+  a )  =  n )
5122, 23, 27, 29, 30, 42, 50isgrpde 17443 . . . . 5  |-  ( ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  /\  G  e. SGrp )  ->  G  e.  Grp )
5251ex 450 . . . 4  |-  ( ( n  e.  B  /\  A. x  e.  B  ( ( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  ->  ( G  e. SGrp 
->  G  e.  Grp ) )
5352rexlimiva 3028 . . 3  |-  ( E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  -> 
( G  e. SGrp  ->  G  e.  Grp ) )
5453impcom 446 . 2  |-  ( ( G  e. SGrp  /\  E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  ->  G  e.  Grp )
5521, 54impbii 199 1  |-  ( G  e.  Grp  <->  ( G  e. SGrp  /\  E. n  e.  B  A. x  e.  B  ( ( n 
.+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100  Mgmcmgm 17240  SGrpcsgrp 17283   Mndcmnd 17294   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425
This theorem is referenced by:  dfgrp2e  17448  dfgrp3  17514
  Copyright terms: Public domain W3C validator