Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelvalN Structured version   Visualization version   Unicode version

Theorem dibopelvalN 36432
Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibval.b  |-  B  =  ( Base `  K
)
dibval.h  |-  H  =  ( LHyp `  K
)
dibval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dibval.o  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
dibval.j  |-  J  =  ( ( DIsoA `  K
) `  W )
dibval.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibopelvalN  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) ) )
Distinct variable groups:    f, K    f, W    T, f
Allowed substitution hints:    B( f)    S( f)    F( f)    H( f)    I( f)    J( f)    V( f)    X( f)    .0. ( f)

Proof of Theorem dibopelvalN
StepHypRef Expression
1 dibval.b . . . 4  |-  B  =  ( Base `  K
)
2 dibval.h . . . 4  |-  H  =  ( LHyp `  K
)
3 dibval.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 dibval.o . . . 4  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
5 dibval.j . . . 4  |-  J  =  ( ( DIsoA `  K
) `  W )
6 dibval.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
71, 2, 3, 4, 5, 6dibval 36431 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  (
I `  X )  =  ( ( J `
 X )  X. 
{  .0.  } ) )
87eleq2d 2687 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  <. F ,  S >.  e.  ( ( J `
 X )  X. 
{  .0.  } ) ) )
9 opelxp 5146 . . 3  |-  ( <. F ,  S >.  e.  ( ( J `  X )  X.  {  .0.  } )  <->  ( F  e.  ( J `  X
)  /\  S  e.  {  .0.  } ) )
10 fvex 6201 . . . . . . . 8  |-  ( (
LTrn `  K ) `  W )  e.  _V
113, 10eqeltri 2697 . . . . . . 7  |-  T  e. 
_V
1211mptex 6486 . . . . . 6  |-  ( f  e.  T  |->  (  _I  |`  B ) )  e. 
_V
134, 12eqeltri 2697 . . . . 5  |-  .0.  e.  _V
1413elsn2 4211 . . . 4  |-  ( S  e.  {  .0.  }  <->  S  =  .0.  )
1514anbi2i 730 . . 3  |-  ( ( F  e.  ( J `
 X )  /\  S  e.  {  .0.  } )  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) )
169, 15bitri 264 . 2  |-  ( <. F ,  S >.  e.  ( ( J `  X )  X.  {  .0.  } )  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) )
178, 16syl6bb 276 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  ( <. F ,  S >.  e.  ( I `  X
)  <->  ( F  e.  ( J `  X
)  /\  S  =  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114    |` cres 5116   ` cfv 5888   Basecbs 15857   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317   DIsoBcdib 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dib 36428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator