Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval Structured version   Visualization version   Unicode version

Theorem dibval 36431
Description: The partial isomorphism B for a lattice  K. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b  |-  B  =  ( Base `  K
)
dibval.h  |-  H  =  ( LHyp `  K
)
dibval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dibval.o  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
dibval.j  |-  J  =  ( ( DIsoA `  K
) `  W )
dibval.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  (
I `  X )  =  ( ( J `
 X )  X. 
{  .0.  } ) )
Distinct variable groups:    f, K    f, W
Allowed substitution hints:    B( f)    T( f)    H( f)    I( f)    J( f)    V( f)    X( f)    .0. ( f)

Proof of Theorem dibval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dibval.b . . . . 5  |-  B  =  ( Base `  K
)
2 dibval.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 dibval.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
4 dibval.o . . . . 5  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
5 dibval.j . . . . 5  |-  J  =  ( ( DIsoA `  K
) `  W )
6 dibval.i . . . . 5  |-  I  =  ( ( DIsoB `  K
) `  W )
71, 2, 3, 4, 5, 6dibfval 36430 . . . 4  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  dom  J  |->  ( ( J `  x
)  X.  {  .0.  } ) ) )
87adantr 481 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  I  =  ( x  e. 
dom  J  |->  ( ( J `  x )  X.  {  .0.  }
) ) )
98fveq1d 6193 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  (
I `  X )  =  ( ( x  e.  dom  J  |->  ( ( J `  x
)  X.  {  .0.  } ) ) `  X
) )
10 fveq2 6191 . . . . 5  |-  ( x  =  X  ->  ( J `  x )  =  ( J `  X ) )
1110xpeq1d 5138 . . . 4  |-  ( x  =  X  ->  (
( J `  x
)  X.  {  .0.  } )  =  ( ( J `  X )  X.  {  .0.  }
) )
12 eqid 2622 . . . 4  |-  ( x  e.  dom  J  |->  ( ( J `  x
)  X.  {  .0.  } ) )  =  ( x  e.  dom  J  |->  ( ( J `  x )  X.  {  .0.  } ) )
13 fvex 6201 . . . . 5  |-  ( J `
 X )  e. 
_V
14 snex 4908 . . . . 5  |-  {  .0.  }  e.  _V
1513, 14xpex 6962 . . . 4  |-  ( ( J `  X )  X.  {  .0.  }
)  e.  _V
1611, 12, 15fvmpt 6282 . . 3  |-  ( X  e.  dom  J  -> 
( ( x  e. 
dom  J  |->  ( ( J `  x )  X.  {  .0.  }
) ) `  X
)  =  ( ( J `  X )  X.  {  .0.  }
) )
1716adantl 482 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  (
( x  e.  dom  J 
|->  ( ( J `  x )  X.  {  .0.  } ) ) `  X )  =  ( ( J `  X
)  X.  {  .0.  } ) )
189, 17eqtrd 2656 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  J )  ->  (
I `  X )  =  ( ( J `
 X )  X. 
{  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114    |` cres 5116   ` cfv 5888   Basecbs 15857   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317   DIsoBcdib 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dib 36428
This theorem is referenced by:  dibopelvalN  36432  dibval2  36433  dibvalrel  36452
  Copyright terms: Public domain W3C validator