Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibvalrel Structured version   Visualization version   Unicode version

Theorem dibvalrel 36452
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
Hypotheses
Ref Expression
dibcl.h  |-  H  =  ( LHyp `  K
)
dibcl.i  |-  I  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dibvalrel  |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )

Proof of Theorem dibvalrel
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 relxp 5227 . . 3  |-  Rel  (
( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } )
2 dibcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 eqid 2622 . . . . . . . 8  |-  ( (
DIsoA `  K ) `  W )  =  ( ( DIsoA `  K ) `  W )
4 dibcl.i . . . . . . . 8  |-  I  =  ( ( DIsoB `  K
) `  W )
52, 3, 4dibdiadm 36444 . . . . . . 7  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  dom  ( ( DIsoA `  K
) `  W )
)
65eleq2d 2687 . . . . . 6  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( X  e.  dom  I 
<->  X  e.  dom  (
( DIsoA `  K ) `  W ) ) )
76biimpa 501 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  X  e.  dom  ( ( DIsoA `  K ) `  W
) )
8 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
9 eqid 2622 . . . . . 6  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
10 eqid 2622 . . . . . 6  |-  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( h  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
118, 2, 9, 10, 3, 4dibval 36431 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  ( ( DIsoA `  K
) `  W )
)  ->  ( I `  X )  =  ( ( ( ( DIsoA `  K ) `  W
) `  X )  X.  { ( h  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) } ) )
127, 11syldan 487 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  (
I `  X )  =  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } ) )
1312releqd 5203 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  ( Rel  ( I `  X
)  <->  Rel  ( ( ( ( DIsoA `  K ) `  W ) `  X
)  X.  { ( h  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) ) } ) ) )
141, 13mpbiri 248 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  dom  I )  ->  Rel  ( I `  X
) )
15 rel0 5243 . . . 4  |-  Rel  (/)
16 ndmfv 6218 . . . . 5  |-  ( -.  X  e.  dom  I  ->  ( I `  X
)  =  (/) )
1716releqd 5203 . . . 4  |-  ( -.  X  e.  dom  I  ->  ( Rel  ( I `
 X )  <->  Rel  (/) ) )
1815, 17mpbiri 248 . . 3  |-  ( -.  X  e.  dom  I  ->  Rel  ( I `  X ) )
1918adantl 482 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  -.  X  e.  dom  I )  ->  Rel  ( I `  X
) )
2014, 19pm2.61dan 832 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  Rel  ( I `  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915   {csn 4177    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114    |` cres 5116   Rel wrel 5119   ` cfv 5888   Basecbs 15857   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317   DIsoBcdib 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dib 36428
This theorem is referenced by:  dibglbN  36455  dib2dim  36532  dih2dimbALTN  36534
  Copyright terms: Public domain W3C validator