Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval1sta Structured version   Visualization version   Unicode version

Theorem dicelval1sta 36476
Description: Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicelval1sta.l  |-  .<_  =  ( le `  K )
dicelval1sta.a  |-  A  =  ( Atoms `  K )
dicelval1sta.h  |-  H  =  ( LHyp `  K
)
dicelval1sta.p  |-  P  =  ( ( oc `  K ) `  W
)
dicelval1sta.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicelval1sta.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicelval1sta  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) )
Distinct variable groups:    g, K    Q, g    T, g    g, W
Allowed substitution hints:    A( g)    P( g)    H( g)    I( g)    .<_ ( g)    V( g)    Y( g)

Proof of Theorem dicelval1sta
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicelval1sta.l . . . . . 6  |-  .<_  =  ( le `  K )
2 dicelval1sta.a . . . . . 6  |-  A  =  ( Atoms `  K )
3 dicelval1sta.h . . . . . 6  |-  H  =  ( LHyp `  K
)
4 dicelval1sta.p . . . . . 6  |-  P  =  ( ( oc `  K ) `  W
)
5 dicelval1sta.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
6 eqid 2622 . . . . . 6  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
7 dicelval1sta.i . . . . . 6  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicval 36465 . . . . 5  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } )
98eleq2d 2687 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
Y  e.  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } ) )
109biimp3a 1432 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  Y  e.  { <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) } )
11 eqeq1 2626 . . . . 5  |-  ( f  =  ( 1st `  Y
)  ->  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  <->  ( 1st `  Y
)  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
1211anbi1d 741 . . . 4  |-  ( f  =  ( 1st `  Y
)  ->  ( (
f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  ( ( 1st `  Y )  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  /\  s  e.  ( ( TEndo `  K ) `  W ) ) ) )
13 fveq1 6190 . . . . . 6  |-  ( s  =  ( 2nd `  Y
)  ->  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) ) )
1413eqeq2d 2632 . . . . 5  |-  ( s  =  ( 2nd `  Y
)  ->  ( ( 1st `  Y )  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  <-> 
( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
15 eleq1 2689 . . . . 5  |-  ( s  =  ( 2nd `  Y
)  ->  ( s  e.  ( ( TEndo `  K
) `  W )  <->  ( 2nd `  Y )  e.  ( ( TEndo `  K ) `  W
) ) )
1614, 15anbi12d 747 . . . 4  |-  ( s  =  ( 2nd `  Y
)  ->  ( (
( 1st `  Y
)  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
)  <->  ( ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )
) ) )
1712, 16elopabi 7231 . . 3  |-  ( Y  e.  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  ( ( TEndo `  K
) `  W )
) }  ->  (
( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )
) )
1810, 17syl 17 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  (
( 1st `  Y
)  =  ( ( 2nd `  Y ) `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  ( 2nd `  Y )  e.  ( ( TEndo `  K
) `  W )
) )
1918simpld 475 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Y  e.  ( I `  Q
) )  ->  ( 1st `  Y )  =  ( ( 2nd `  Y
) `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   {copab 4712   ` cfv 5888   iota_crio 6610   1stc1st 7166   2ndc2nd 7167   lecple 15948   occoc 15949   Atomscatm 34550   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-1st 7168  df-2nd 7169  df-dic 36462
This theorem is referenced by:  dicvaddcl  36479  dicvscacl  36480
  Copyright terms: Public domain W3C validator