Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiunlem Structured version   Visualization version   Unicode version

Theorem meadjiunlem 40682
Description: The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiunlem.f  |-  ( ph  ->  M  e. Meas )
meadjiunlem.3  |-  S  =  dom  M
meadjiunlem.x  |-  ( ph  ->  X  e.  V )
meadjiunlem.g  |-  ( ph  ->  G : X --> S )
meadjiunlem.y  |-  Y  =  { i  e.  X  |  ( G `  i )  =/=  (/) }
meadjiunlem.dj  |-  ( ph  -> Disj  i  e.  X  ( G `  i )
)
Assertion
Ref Expression
meadjiunlem  |-  ( ph  ->  (Σ^ `  ( M  |`  ran  G
) )  =  (Σ^ `  ( M  o.  G )
) )
Distinct variable groups:    i, G    i, X    i, Y    ph, i
Allowed substitution hints:    S( i)    M( i)    V( i)

Proof of Theorem meadjiunlem
Dummy variables  x  k  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ k
ph
2 meadjiunlem.g . . . . . 6  |-  ( ph  ->  G : X --> S )
3 meadjiunlem.x . . . . . 6  |-  ( ph  ->  X  e.  V )
42, 3jca 554 . . . . 5  |-  ( ph  ->  ( G : X --> S  /\  X  e.  V
) )
5 fex 6490 . . . . 5  |-  ( ( G : X --> S  /\  X  e.  V )  ->  G  e.  _V )
6 rnexg 7098 . . . . 5  |-  ( G  e.  _V  ->  ran  G  e.  _V )
74, 5, 63syl 18 . . . 4  |-  ( ph  ->  ran  G  e.  _V )
8 difssd 3738 . . . 4  |-  ( ph  ->  ( ran  G  \  { (/) } )  C_  ran  G )
9 meadjiunlem.f . . . . . . 7  |-  ( ph  ->  M  e. Meas )
10 meadjiunlem.3 . . . . . . 7  |-  S  =  dom  M
119, 10meaf 40670 . . . . . 6  |-  ( ph  ->  M : S --> ( 0 [,] +oo ) )
1211adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  ( ran  G  \  { (/)
} ) )  ->  M : S --> ( 0 [,] +oo ) )
13 frn 6053 . . . . . . . 8  |-  ( G : X --> S  ->  ran  G  C_  S )
142, 13syl 17 . . . . . . 7  |-  ( ph  ->  ran  G  C_  S
)
1514adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ran  G  \  { (/)
} ) )  ->  ran  G  C_  S )
168sselda 3603 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ran  G  \  { (/)
} ) )  -> 
k  e.  ran  G
)
1715, 16sseldd 3604 . . . . 5  |-  ( (
ph  /\  k  e.  ( ran  G  \  { (/)
} ) )  -> 
k  e.  S )
1812, 17ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  k  e.  ( ran  G  \  { (/)
} ) )  -> 
( M `  k
)  e.  ( 0 [,] +oo ) )
19 simpl 473 . . . . 5  |-  ( (
ph  /\  k  e.  ( ran  G  \  ( ran  G  \  { (/) } ) ) )  ->  ph )
20 id 22 . . . . . . . 8  |-  ( k  e.  ( ran  G  \  ( ran  G  \  { (/) } ) )  ->  k  e.  ( ran  G  \  ( ran  G  \  { (/) } ) ) )
21 dfin4 3867 . . . . . . . . 9  |-  ( ran 
G  i^i  { (/) } )  =  ( ran  G  \  ( ran  G  \  { (/) } ) )
2221eqcomi 2631 . . . . . . . 8  |-  ( ran 
G  \  ( ran  G 
\  { (/) } ) )  =  ( ran 
G  i^i  { (/) } )
2320, 22syl6eleq 2711 . . . . . . 7  |-  ( k  e.  ( ran  G  \  ( ran  G  \  { (/) } ) )  ->  k  e.  ( ran  G  i^i  { (/)
} ) )
24 elinel2 3800 . . . . . . . 8  |-  ( k  e.  ( ran  G  i^i  { (/) } )  -> 
k  e.  { (/) } )
25 elsni 4194 . . . . . . . 8  |-  ( k  e.  { (/) }  ->  k  =  (/) )
2624, 25syl 17 . . . . . . 7  |-  ( k  e.  ( ran  G  i^i  { (/) } )  -> 
k  =  (/) )
2723, 26syl 17 . . . . . 6  |-  ( k  e.  ( ran  G  \  ( ran  G  \  { (/) } ) )  ->  k  =  (/) )
2827adantl 482 . . . . 5  |-  ( (
ph  /\  k  e.  ( ran  G  \  ( ran  G  \  { (/) } ) ) )  -> 
k  =  (/) )
29 simpr 477 . . . . . . 7  |-  ( (
ph  /\  k  =  (/) )  ->  k  =  (/) )
3029fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  k  =  (/) )  ->  ( M `  k )  =  ( M `  (/) ) )
319mea0 40671 . . . . . . 7  |-  ( ph  ->  ( M `  (/) )  =  0 )
3231adantr 481 . . . . . 6  |-  ( (
ph  /\  k  =  (/) )  ->  ( M `  (/) )  =  0 )
3330, 32eqtrd 2656 . . . . 5  |-  ( (
ph  /\  k  =  (/) )  ->  ( M `  k )  =  0 )
3419, 28, 33syl2anc 693 . . . 4  |-  ( (
ph  /\  k  e.  ( ran  G  \  ( ran  G  \  { (/) } ) ) )  -> 
( M `  k
)  =  0 )
351, 7, 8, 18, 34sge0ss 40629 . . 3  |-  ( ph  ->  (Σ^ `  ( k  e.  ( ran  G  \  { (/)
} )  |->  ( M `
 k ) ) )  =  (Σ^ `  ( k  e.  ran  G 
|->  ( M `  k
) ) ) )
3635eqcomd 2628 . 2  |-  ( ph  ->  (Σ^ `  ( k  e.  ran  G 
|->  ( M `  k
) ) )  =  (Σ^ `  ( k  e.  ( ran  G  \  { (/)
} )  |->  ( M `
 k ) ) ) )
3711, 14feqresmpt 6250 . . 3  |-  ( ph  ->  ( M  |`  ran  G
)  =  ( k  e.  ran  G  |->  ( M `  k ) ) )
3837fveq2d 6195 . 2  |-  ( ph  ->  (Σ^ `  ( M  |`  ran  G
) )  =  (Σ^ `  (
k  e.  ran  G  |->  ( M `  k
) ) ) )
392ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  j  e.  X )  ->  ( G `  j )  e.  S )
402feqmptd 6249 . . . . 5  |-  ( ph  ->  G  =  ( j  e.  X  |->  ( G `
 j ) ) )
4111feqmptd 6249 . . . . 5  |-  ( ph  ->  M  =  ( k  e.  S  |->  ( M `
 k ) ) )
42 fveq2 6191 . . . . 5  |-  ( k  =  ( G `  j )  ->  ( M `  k )  =  ( M `  ( G `  j ) ) )
4339, 40, 41, 42fmptco 6396 . . . 4  |-  ( ph  ->  ( M  o.  G
)  =  ( j  e.  X  |->  ( M `
 ( G `  j ) ) ) )
4443fveq2d 6195 . . 3  |-  ( ph  ->  (Σ^ `  ( M  o.  G
) )  =  (Σ^ `  (
j  e.  X  |->  ( M `  ( G `
 j ) ) ) ) )
45 nfv 1843 . . . . 5  |-  F/ j
ph
46 meadjiunlem.y . . . . . 6  |-  Y  =  { i  e.  X  |  ( G `  i )  =/=  (/) }
47 ssrab2 3687 . . . . . . 7  |-  { i  e.  X  |  ( G `  i )  =/=  (/) }  C_  X
4847a1i 11 . . . . . 6  |-  ( ph  ->  { i  e.  X  |  ( G `  i )  =/=  (/) }  C_  X )
4946, 48syl5eqss 3649 . . . . 5  |-  ( ph  ->  Y  C_  X )
5011adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  Y )  ->  M : S --> ( 0 [,] +oo ) )
512adantr 481 . . . . . . 7  |-  ( (
ph  /\  j  e.  Y )  ->  G : X --> S )
5249sselda 3603 . . . . . . 7  |-  ( (
ph  /\  j  e.  Y )  ->  j  e.  X )
5351, 52ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  j  e.  Y )  ->  ( G `  j )  e.  S )
5450, 53ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  j  e.  Y )  ->  ( M `  ( G `  j ) )  e.  ( 0 [,] +oo ) )
55 eldifi 3732 . . . . . . . . . . 11  |-  ( j  e.  ( X  \  Y )  ->  j  e.  X )
5655ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( X  \  Y
) )  /\  ( M `  ( G `  j ) )  =/=  0 )  ->  j  e.  X )
57 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( ( G `  j )  =  (/)  ->  ( M `
 ( G `  j ) )  =  ( M `  (/) ) )
5857adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( G `  j )  =  (/) )  ->  ( M `  ( G `  j ) )  =  ( M `
 (/) ) )
599adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( G `  j )  =  (/) )  ->  M  e. Meas )
6059mea0 40671 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( G `  j )  =  (/) )  ->  ( M `  (/) )  =  0 )
6158, 60eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( G `  j )  =  (/) )  ->  ( M `  ( G `  j ) )  =  0 )
6261ad4ant14 1293 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  ( X  \  Y ) )  /\  ( M `  ( G `
 j ) )  =/=  0 )  /\  ( G `  j )  =  (/) )  ->  ( M `  ( G `  j ) )  =  0 )
63 neneq 2800 . . . . . . . . . . . . 13  |-  ( ( M `  ( G `
 j ) )  =/=  0  ->  -.  ( M `  ( G `
 j ) )  =  0 )
6463ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  ( X  \  Y ) )  /\  ( M `  ( G `
 j ) )  =/=  0 )  /\  ( G `  j )  =  (/) )  ->  -.  ( M `  ( G `
 j ) )  =  0 )
6562, 64pm2.65da 600 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( X  \  Y
) )  /\  ( M `  ( G `  j ) )  =/=  0 )  ->  -.  ( G `  j )  =  (/) )
6665neqned 2801 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( X  \  Y
) )  /\  ( M `  ( G `  j ) )  =/=  0 )  ->  ( G `  j )  =/=  (/) )
6756, 66jca 554 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( X  \  Y
) )  /\  ( M `  ( G `  j ) )  =/=  0 )  ->  (
j  e.  X  /\  ( G `  j )  =/=  (/) ) )
68 fveq2 6191 . . . . . . . . . . 11  |-  ( i  =  j  ->  ( G `  i )  =  ( G `  j ) )
6968neeq1d 2853 . . . . . . . . . 10  |-  ( i  =  j  ->  (
( G `  i
)  =/=  (/)  <->  ( G `  j )  =/=  (/) ) )
7069elrab 3363 . . . . . . . . 9  |-  ( j  e.  { i  e.  X  |  ( G `
 i )  =/=  (/) }  <->  ( j  e.  X  /\  ( G `
 j )  =/=  (/) ) )
7167, 70sylibr 224 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( X  \  Y
) )  /\  ( M `  ( G `  j ) )  =/=  0 )  ->  j  e.  { i  e.  X  |  ( G `  i )  =/=  (/) } )
7271, 46syl6eleqr 2712 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( X  \  Y
) )  /\  ( M `  ( G `  j ) )  =/=  0 )  ->  j  e.  Y )
73 eldifn 3733 . . . . . . . 8  |-  ( j  e.  ( X  \  Y )  ->  -.  j  e.  Y )
7473ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( X  \  Y
) )  /\  ( M `  ( G `  j ) )  =/=  0 )  ->  -.  j  e.  Y )
7572, 74pm2.65da 600 . . . . . 6  |-  ( (
ph  /\  j  e.  ( X  \  Y ) )  ->  -.  ( M `  ( G `  j ) )  =/=  0 )
76 nne 2798 . . . . . 6  |-  ( -.  ( M `  ( G `  j )
)  =/=  0  <->  ( M `  ( G `  j ) )  =  0 )
7775, 76sylib 208 . . . . 5  |-  ( (
ph  /\  j  e.  ( X  \  Y ) )  ->  ( M `  ( G `  j
) )  =  0 )
7845, 3, 49, 54, 77sge0ss 40629 . . . 4  |-  ( ph  ->  (Σ^ `  ( j  e.  Y  |->  ( M `  ( G `  j )
) ) )  =  (Σ^ `  ( j  e.  X  |->  ( M `  ( G `  j )
) ) ) )
7978eqcomd 2628 . . 3  |-  ( ph  ->  (Σ^ `  ( j  e.  X  |->  ( M `  ( G `  j )
) ) )  =  (Σ^ `  ( j  e.  Y  |->  ( M `  ( G `  j )
) ) ) )
803, 49ssexd 4805 . . . . 5  |-  ( ph  ->  Y  e.  _V )
81 nfv 1843 . . . . . . . . 9  |-  F/ i
ph
82 eqid 2622 . . . . . . . . 9  |-  ( i  e.  Y  |->  ( G `
 i ) )  =  ( i  e.  Y  |->  ( G `  i ) )
832ffnd 6046 . . . . . . . . . . . . 13  |-  ( ph  ->  G  Fn  X )
84 dffn3 6054 . . . . . . . . . . . . 13  |-  ( G  Fn  X  <->  G : X
--> ran  G )
8583, 84sylib 208 . . . . . . . . . . . 12  |-  ( ph  ->  G : X --> ran  G
)
8685adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  Y )  ->  G : X --> ran  G )
8749sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  Y )  ->  i  e.  X )
8886, 87ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  Y )  ->  ( G `  i )  e.  ran  G )
8946eleq2i 2693 . . . . . . . . . . . . . . 15  |-  ( i  e.  Y  <->  i  e.  { i  e.  X  | 
( G `  i
)  =/=  (/) } )
90 rabid 3116 . . . . . . . . . . . . . . 15  |-  ( i  e.  { i  e.  X  |  ( G `
 i )  =/=  (/) }  <->  ( i  e.  X  /\  ( G `
 i )  =/=  (/) ) )
9189, 90bitri 264 . . . . . . . . . . . . . 14  |-  ( i  e.  Y  <->  ( i  e.  X  /\  ( G `  i )  =/=  (/) ) )
9291biimpi 206 . . . . . . . . . . . . 13  |-  ( i  e.  Y  ->  (
i  e.  X  /\  ( G `  i )  =/=  (/) ) )
9392simprd 479 . . . . . . . . . . . 12  |-  ( i  e.  Y  ->  ( G `  i )  =/=  (/) )
9493adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  Y )  ->  ( G `  i )  =/=  (/) )
95 nelsn 4212 . . . . . . . . . . 11  |-  ( ( G `  i )  =/=  (/)  ->  -.  ( G `  i )  e.  { (/) } )
9694, 95syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  Y )  ->  -.  ( G `  i )  e.  { (/) } )
9788, 96eldifd 3585 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  Y )  ->  ( G `  i )  e.  ( ran  G  \  { (/) } ) )
98 meadjiunlem.dj . . . . . . . . . 10  |-  ( ph  -> Disj  i  e.  X  ( G `  i )
)
99 disjss1 4626 . . . . . . . . . 10  |-  ( Y 
C_  X  ->  (Disj  i  e.  X  ( G `
 i )  -> Disj  i  e.  Y  ( G `
 i ) ) )
10049, 98, 99sylc 65 . . . . . . . . 9  |-  ( ph  -> Disj  i  e.  Y  ( G `  i )
)
10181, 82, 97, 94, 100disjf1 39369 . . . . . . . 8  |-  ( ph  ->  ( i  e.  Y  |->  ( G `  i
) ) : Y -1-1-> ( ran  G  \  { (/)
} ) )
1022, 49feqresmpt 6250 . . . . . . . . 9  |-  ( ph  ->  ( G  |`  Y )  =  ( i  e.  Y  |->  ( G `  i ) ) )
103 f1eq1 6096 . . . . . . . . 9  |-  ( ( G  |`  Y )  =  ( i  e.  Y  |->  ( G `  i ) )  -> 
( ( G  |`  Y ) : Y -1-1-> ( ran  G  \  { (/)
} )  <->  ( i  e.  Y  |->  ( G `
 i ) ) : Y -1-1-> ( ran 
G  \  { (/) } ) ) )
104102, 103syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( G  |`  Y ) : Y -1-1-> ( ran  G  \  { (/)
} )  <->  ( i  e.  Y  |->  ( G `
 i ) ) : Y -1-1-> ( ran 
G  \  { (/) } ) ) )
105101, 104mpbird 247 . . . . . . 7  |-  ( ph  ->  ( G  |`  Y ) : Y -1-1-> ( ran 
G  \  { (/) } ) )
106102rneqd 5353 . . . . . . . . 9  |-  ( ph  ->  ran  ( G  |`  Y )  =  ran  ( i  e.  Y  |->  ( G `  i
) ) )
10797ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. i  e.  Y  ( G `  i )  e.  ( ran  G  \  { (/) } ) )
10882rnmptss 6392 . . . . . . . . . 10  |-  ( A. i  e.  Y  ( G `  i )  e.  ( ran  G  \  { (/) } )  ->  ran  ( i  e.  Y  |->  ( G `  i
) )  C_  ( ran  G  \  { (/) } ) )
109107, 108syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  ( i  e.  Y  |->  ( G `  i ) )  C_  ( ran  G  \  { (/)
} ) )
110106, 109eqsstrd 3639 . . . . . . . 8  |-  ( ph  ->  ran  ( G  |`  Y )  C_  ( ran  G  \  { (/) } ) )
111 simpl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ran  G  \  { (/)
} ) )  ->  ph )
112 eldifi 3732 . . . . . . . . . . . 12  |-  ( x  e.  ( ran  G  \  { (/) } )  ->  x  e.  ran  G )
113112adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ran  G  \  { (/)
} ) )  ->  x  e.  ran  G )
114 eldifsni 4320 . . . . . . . . . . . 12  |-  ( x  e.  ( ran  G  \  { (/) } )  ->  x  =/=  (/) )
115114adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ran  G  \  { (/)
} ) )  ->  x  =/=  (/) )
116 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ran  G )  ->  x  e.  ran  G )
117 fvelrnb 6243 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  X  ->  (
x  e.  ran  G  <->  E. i  e.  X  ( G `  i )  =  x ) )
11883, 117syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  ran  G  <->  E. i  e.  X  ( G `  i )  =  x ) )
119118adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ran  G )  ->  (
x  e.  ran  G  <->  E. i  e.  X  ( G `  i )  =  x ) )
120116, 119mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ran  G )  ->  E. i  e.  X  ( G `  i )  =  x )
1211203adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ran  G  /\  x  =/=  (/) )  ->  E. i  e.  X  ( G `  i )  =  x )
122 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( ( G `  i )  =  x  ->  ( G `  i )  =  x )
123122eqcomd 2628 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  i )  =  x  ->  x  =  ( G `  i ) )
1241233ad2ant3 1084 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  =/=  (/) )  /\  i  e.  X  /\  ( G `  i )  =  x )  ->  x  =  ( G `  i ) )
125 simp1l 1085 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =/=  (/) )  /\  i  e.  X  /\  ( G `  i )  =  x )  ->  ph )
126 simp2 1062 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =/=  (/) )  /\  i  e.  X  /\  ( G `  i )  =  x )  ->  i  e.  X )
127 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =/=  (/)  /\  ( G `  i )  =  x )  ->  ( G `  i )  =  x )
128 simpl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =/=  (/)  /\  ( G `  i )  =  x )  ->  x  =/=  (/) )
129127, 128eqnetrd 2861 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =/=  (/)  /\  ( G `  i )  =  x )  ->  ( G `  i )  =/=  (/) )
130129adantll 750 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  =/=  (/) )  /\  ( G `  i )  =  x )  ->  ( G `  i )  =/=  (/) )
1311303adant2 1080 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  =/=  (/) )  /\  i  e.  X  /\  ( G `  i )  =  x )  ->  ( G `  i )  =/=  (/) )
13291biimpri 218 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  X  /\  ( G `  i )  =/=  (/) )  ->  i  e.  Y )
133 fvexd 6203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  X  /\  ( G `  i )  =/=  (/) )  ->  ( G `  i )  e.  _V )
13482elrnmpt1 5374 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  Y  /\  ( G `  i )  e.  _V )  -> 
( G `  i
)  e.  ran  (
i  e.  Y  |->  ( G `  i ) ) )
135132, 133, 134syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  e.  X  /\  ( G `  i )  =/=  (/) )  ->  ( G `  i )  e.  ran  ( i  e.  Y  |->  ( G `  i ) ) )
1361353adant1 1079 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  X  /\  ( G `  i )  =/=  (/) )  -> 
( G `  i
)  e.  ran  (
i  e.  Y  |->  ( G `  i ) ) )
137106eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ran  ( i  e.  Y  |->  ( G `  i ) )  =  ran  ( G  |`  Y ) )
1381373ad2ant1 1082 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  X  /\  ( G `  i )  =/=  (/) )  ->  ran  ( i  e.  Y  |->  ( G `  i
) )  =  ran  ( G  |`  Y ) )
139136, 138eleqtrd 2703 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  X  /\  ( G `  i )  =/=  (/) )  -> 
( G `  i
)  e.  ran  ( G  |`  Y ) )
140125, 126, 131, 139syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  =/=  (/) )  /\  i  e.  X  /\  ( G `  i )  =  x )  ->  ( G `  i )  e.  ran  ( G  |`  Y ) )
141124, 140eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  =/=  (/) )  /\  i  e.  X  /\  ( G `  i )  =  x )  ->  x  e.  ran  ( G  |`  Y ) )
1421413exp 1264 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  =/=  (/) )  ->  ( i  e.  X  ->  ( ( G `  i )  =  x  ->  x  e.  ran  ( G  |`  Y ) ) ) )
143142rexlimdv 3030 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  =/=  (/) )  ->  ( E. i  e.  X  ( G `  i )  =  x  ->  x  e. 
ran  ( G  |`  Y ) ) )
1441433adant2 1080 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ran  G  /\  x  =/=  (/) )  ->  ( E. i  e.  X  ( G `  i )  =  x  ->  x  e.  ran  ( G  |`  Y ) ) )
145121, 144mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ran  G  /\  x  =/=  (/) )  ->  x  e. 
ran  ( G  |`  Y ) )
146111, 113, 115, 145syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ran  G  \  { (/)
} ) )  ->  x  e.  ran  ( G  |`  Y ) )
147146ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( ran  G  \  { (/)
} ) x  e. 
ran  ( G  |`  Y ) )
148 dfss3 3592 . . . . . . . . 9  |-  ( ( ran  G  \  { (/)
} )  C_  ran  ( G  |`  Y )  <->  A. x  e.  ( ran  G  \  { (/) } ) x  e.  ran  ( G  |`  Y ) )
149147, 148sylibr 224 . . . . . . . 8  |-  ( ph  ->  ( ran  G  \  { (/) } )  C_  ran  ( G  |`  Y ) )
150110, 149eqssd 3620 . . . . . . 7  |-  ( ph  ->  ran  ( G  |`  Y )  =  ( ran  G  \  { (/)
} ) )
151105, 150jca 554 . . . . . 6  |-  ( ph  ->  ( ( G  |`  Y ) : Y -1-1-> ( ran  G  \  { (/)
} )  /\  ran  ( G  |`  Y )  =  ( ran  G  \  { (/) } ) ) )
152 dff1o5 6146 . . . . . 6  |-  ( ( G  |`  Y ) : Y -1-1-onto-> ( ran  G  \  { (/) } )  <->  ( ( G  |`  Y ) : Y -1-1-> ( ran  G  \  { (/) } )  /\  ran  ( G  |`  Y )  =  ( ran  G  \  { (/) } ) ) )
153151, 152sylibr 224 . . . . 5  |-  ( ph  ->  ( G  |`  Y ) : Y -1-1-onto-> ( ran  G  \  { (/) } ) )
154 fvres 6207 . . . . . 6  |-  ( j  e.  Y  ->  (
( G  |`  Y ) `
 j )  =  ( G `  j
) )
155154adantl 482 . . . . 5  |-  ( (
ph  /\  j  e.  Y )  ->  (
( G  |`  Y ) `
 j )  =  ( G `  j
) )
1561, 45, 42, 80, 153, 155, 18sge0f1o 40599 . . . 4  |-  ( ph  ->  (Σ^ `  ( k  e.  ( ran  G  \  { (/)
} )  |->  ( M `
 k ) ) )  =  (Σ^ `  ( j  e.  Y  |->  ( M `  ( G `  j )
) ) ) )
157156eqcomd 2628 . . 3  |-  ( ph  ->  (Σ^ `  ( j  e.  Y  |->  ( M `  ( G `  j )
) ) )  =  (Σ^ `  ( k  e.  ( ran  G  \  { (/)
} )  |->  ( M `
 k ) ) ) )
15844, 79, 1573eqtrd 2660 . 2  |-  ( ph  ->  (Σ^ `  ( M  o.  G
) )  =  (Σ^ `  (
k  e.  ( ran 
G  \  { (/) } ) 
|->  ( M `  k
) ) ) )
15936, 38, 1583eqtr4d 2666 1  |-  ( ph  ->  (Σ^ `  ( M  |`  ran  G
) )  =  (Σ^ `  ( M  o.  G )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177  Disj wdisj 4620    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   [,]cicc 12178  Σ^csumge0 40579  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580  df-mea 40667
This theorem is referenced by:  meadjiun  40683
  Copyright terms: Public domain W3C validator