Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodtp Structured version   Visualization version   Unicode version

Theorem prodtp 29573
Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
prodpr.1  |-  ( k  =  A  ->  D  =  E )
prodpr.2  |-  ( k  =  B  ->  D  =  F )
prodpr.a  |-  ( ph  ->  A  e.  V )
prodpr.b  |-  ( ph  ->  B  e.  W )
prodpr.e  |-  ( ph  ->  E  e.  CC )
prodpr.f  |-  ( ph  ->  F  e.  CC )
prodpr.3  |-  ( ph  ->  A  =/=  B )
prodtp.1  |-  ( k  =  C  ->  D  =  G )
prodtp.c  |-  ( ph  ->  C  e.  X )
prodtp.g  |-  ( ph  ->  G  e.  CC )
prodtp.2  |-  ( ph  ->  A  =/=  C )
prodtp.3  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
prodtp  |-  ( ph  ->  prod_ k  e.  { A ,  B ,  C } D  =  ( ( E  x.  F
)  x.  G ) )
Distinct variable groups:    A, k    B, k    C, k    k, E   
k, F    k, G    k, V    k, W    k, X    ph, k
Allowed substitution hint:    D( k)

Proof of Theorem prodtp
StepHypRef Expression
1 prodtp.2 . . . 4  |-  ( ph  ->  A  =/=  C )
2 prodtp.3 . . . 4  |-  ( ph  ->  B  =/=  C )
3 disjprsn 4250 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
41, 2, 3syl2anc 693 . . 3  |-  ( ph  ->  ( { A ,  B }  i^i  { C } )  =  (/) )
5 df-tp 4182 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
65a1i 11 . . 3  |-  ( ph  ->  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } ) )
7 tpfi 8236 . . . 4  |-  { A ,  B ,  C }  e.  Fin
87a1i 11 . . 3  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
9 vex 3203 . . . . 5  |-  k  e. 
_V
109eltp 4230 . . . 4  |-  ( k  e.  { A ,  B ,  C }  <->  ( k  =  A  \/  k  =  B  \/  k  =  C )
)
11 prodpr.1 . . . . . . . 8  |-  ( k  =  A  ->  D  =  E )
1211adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  =  A )  ->  D  =  E )
13 prodpr.e . . . . . . . 8  |-  ( ph  ->  E  e.  CC )
1413adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  =  A )  ->  E  e.  CC )
1512, 14eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  k  =  A )  ->  D  e.  CC )
1615adantlr 751 . . . . 5  |-  ( ( ( ph  /\  (
k  =  A  \/  k  =  B  \/  k  =  C )
)  /\  k  =  A )  ->  D  e.  CC )
17 prodpr.2 . . . . . . . 8  |-  ( k  =  B  ->  D  =  F )
1817adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  =  B )  ->  D  =  F )
19 prodpr.f . . . . . . . 8  |-  ( ph  ->  F  e.  CC )
2019adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  =  B )  ->  F  e.  CC )
2118, 20eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  k  =  B )  ->  D  e.  CC )
2221adantlr 751 . . . . 5  |-  ( ( ( ph  /\  (
k  =  A  \/  k  =  B  \/  k  =  C )
)  /\  k  =  B )  ->  D  e.  CC )
23 prodtp.1 . . . . . . . 8  |-  ( k  =  C  ->  D  =  G )
2423adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  =  C )  ->  D  =  G )
25 prodtp.g . . . . . . . 8  |-  ( ph  ->  G  e.  CC )
2625adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  =  C )  ->  G  e.  CC )
2724, 26eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  k  =  C )  ->  D  e.  CC )
2827adantlr 751 . . . . 5  |-  ( ( ( ph  /\  (
k  =  A  \/  k  =  B  \/  k  =  C )
)  /\  k  =  C )  ->  D  e.  CC )
29 simpr 477 . . . . 5  |-  ( (
ph  /\  ( k  =  A  \/  k  =  B  \/  k  =  C ) )  -> 
( k  =  A  \/  k  =  B  \/  k  =  C ) )
3016, 22, 28, 29mpjao3dan 1395 . . . 4  |-  ( (
ph  /\  ( k  =  A  \/  k  =  B  \/  k  =  C ) )  ->  D  e.  CC )
3110, 30sylan2b 492 . . 3  |-  ( (
ph  /\  k  e.  { A ,  B ,  C } )  ->  D  e.  CC )
324, 6, 8, 31fprodsplit 14696 . 2  |-  ( ph  ->  prod_ k  e.  { A ,  B ,  C } D  =  (
prod_ k  e.  { A ,  B } D  x.  prod_ k  e.  { C } D ) )
33 prodpr.a . . . 4  |-  ( ph  ->  A  e.  V )
34 prodpr.b . . . 4  |-  ( ph  ->  B  e.  W )
35 prodpr.3 . . . 4  |-  ( ph  ->  A  =/=  B )
3611, 17, 33, 34, 13, 19, 35prodpr 29572 . . 3  |-  ( ph  ->  prod_ k  e.  { A ,  B } D  =  ( E  x.  F ) )
37 prodtp.c . . . 4  |-  ( ph  ->  C  e.  X )
3823prodsn 14692 . . . 4  |-  ( ( C  e.  X  /\  G  e.  CC )  ->  prod_ k  e.  { C } D  =  G )
3937, 25, 38syl2anc 693 . . 3  |-  ( ph  ->  prod_ k  e.  { C } D  =  G )
4036, 39oveq12d 6668 . 2  |-  ( ph  ->  ( prod_ k  e.  { A ,  B } D  x.  prod_ k  e. 
{ C } D
)  =  ( ( E  x.  F )  x.  G ) )
4132, 40eqtrd 2656 1  |-  ( ph  ->  prod_ k  e.  { A ,  B ,  C } D  =  ( ( E  x.  F
)  x.  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   {ctp 4181  (class class class)co 6650   Fincfn 7955   CCcc 9934    x. cmul 9941   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  hgt750lemg  30732
  Copyright terms: Public domain W3C validator