Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem1 Structured version   Visualization version   Unicode version

Theorem dnibndlem1 32468
Description: Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem1.1  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
dnibndlem1.2  |-  ( ph  ->  A  e.  RR )
dnibndlem1.3  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
dnibndlem1  |-  ( ph  ->  ( ( abs `  (
( T `  B
)  -  ( T `
 A ) ) )  <_  S  <->  ( abs `  ( ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) ) )  <_  S ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    S( x)    T( x)

Proof of Theorem dnibndlem1
StepHypRef Expression
1 dnibndlem1.3 . . . . 5  |-  ( ph  ->  B  e.  RR )
2 dnibndlem1.1 . . . . . 6  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
32dnival 32461 . . . . 5  |-  ( B  e.  RR  ->  ( T `  B )  =  ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) ) )
41, 3syl 17 . . . 4  |-  ( ph  ->  ( T `  B
)  =  ( abs `  ( ( |_ `  ( B  +  (
1  /  2 ) ) )  -  B
) ) )
5 dnibndlem1.2 . . . . 5  |-  ( ph  ->  A  e.  RR )
62dnival 32461 . . . . 5  |-  ( A  e.  RR  ->  ( T `  A )  =  ( abs `  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) )
75, 6syl 17 . . . 4  |-  ( ph  ->  ( T `  A
)  =  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) )
84, 7oveq12d 6668 . . 3  |-  ( ph  ->  ( ( T `  B )  -  ( T `  A )
)  =  ( ( abs `  ( ( |_ `  ( B  +  ( 1  / 
2 ) ) )  -  B ) )  -  ( abs `  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) ) )
98fveq2d 6195 . 2  |-  ( ph  ->  ( abs `  (
( T `  B
)  -  ( T `
 A ) ) )  =  ( abs `  ( ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) ) ) )
109breq1d 4663 1  |-  ( ph  ->  ( ( abs `  (
( T `  B
)  -  ( T `
 A ) ) )  <_  S  <->  ( abs `  ( ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) ) )  <_  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   |_cfl 12591   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  dnibndlem2  32469  dnibndlem9  32476  dnibndlem12  32479
  Copyright terms: Public domain W3C validator