Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem2 Structured version   Visualization version   Unicode version

Theorem dnibndlem2 32469
Description: Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem2.1  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
dnibndlem2.2  |-  ( ph  ->  A  e.  RR )
dnibndlem2.3  |-  ( ph  ->  B  e.  RR )
dnibndlem2.4  |-  ( ph  ->  ( |_ `  ( B  +  ( 1  /  2 ) ) )  =  ( |_
`  ( A  +  ( 1  /  2
) ) ) )
Assertion
Ref Expression
dnibndlem2  |-  ( ph  ->  ( abs `  (
( T `  B
)  -  ( T `
 A ) ) )  <_  ( abs `  ( B  -  A
) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    T( x)

Proof of Theorem dnibndlem2
StepHypRef Expression
1 dnibndlem2.3 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR )
2 halfre 11246 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
32a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
41, 3jca 554 . . . . . . . . . . 11  |-  ( ph  ->  ( B  e.  RR  /\  ( 1  /  2
)  e.  RR ) )
5 readdcl 10019 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( B  +  ( 1  /  2
) )  e.  RR )
64, 5syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  ( 1  /  2 ) )  e.  RR )
7 reflcl 12597 . . . . . . . . . 10  |-  ( ( B  +  ( 1  /  2 ) )  e.  RR  ->  ( |_ `  ( B  +  ( 1  /  2
) ) )  e.  RR )
86, 7syl 17 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( B  +  ( 1  /  2 ) ) )  e.  RR )
98recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( B  +  ( 1  /  2 ) ) )  e.  CC )
101recnd 10068 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
119, 10subcld 10392 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( B  +  (
1  /  2 ) ) )  -  B
)  e.  CC )
1211abscld 14175 . . . . . 6  |-  ( ph  ->  ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  e.  RR )
1312recnd 10068 . . . . 5  |-  ( ph  ->  ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  e.  CC )
14 dnibndlem2.4 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( B  +  ( 1  /  2 ) ) )  =  ( |_
`  ( A  +  ( 1  /  2
) ) ) )
1514, 9eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( A  +  ( 1  /  2 ) ) )  e.  CC )
16 dnibndlem2.2 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1716recnd 10068 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1815, 17subcld 10392 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
)  e.  CC )
1918abscld 14175 . . . . . 6  |-  ( ph  ->  ( abs `  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) )  e.  RR )
2019recnd 10068 . . . . 5  |-  ( ph  ->  ( abs `  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) )  e.  CC )
2113, 20subcld 10392 . . . 4  |-  ( ph  ->  ( ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) )  e.  CC )
2221abscld 14175 . . 3  |-  ( ph  ->  ( abs `  (
( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) ) )  e.  RR )
2311, 18subcld 10392 . . . 4  |-  ( ph  ->  ( ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  B )  -  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) )  e.  CC )
2423abscld 14175 . . 3  |-  ( ph  ->  ( abs `  (
( ( |_ `  ( B  +  (
1  /  2 ) ) )  -  B
)  -  ( ( |_ `  ( A  +  ( 1  / 
2 ) ) )  -  A ) ) )  e.  RR )
2510, 17subcld 10392 . . . 4  |-  ( ph  ->  ( B  -  A
)  e.  CC )
2625abscld 14175 . . 3  |-  ( ph  ->  ( abs `  ( B  -  A )
)  e.  RR )
2711, 18abs2difabsd 14198 . . 3  |-  ( ph  ->  ( abs `  (
( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) ) )  <_  ( abs `  (
( ( |_ `  ( B  +  (
1  /  2 ) ) )  -  B
)  -  ( ( |_ `  ( A  +  ( 1  / 
2 ) ) )  -  A ) ) ) )
289, 17, 10nnncan1d 10426 . . . . . . 7  |-  ( ph  ->  ( ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  A )  -  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  =  ( B  -  A ) )
2928eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  =  ( ( ( |_ `  ( B  +  ( 1  /  2 ) ) )  -  A )  -  ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  B ) ) )
3029fveq2d 6195 . . . . 5  |-  ( ph  ->  ( abs `  ( B  -  A )
)  =  ( abs `  ( ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  A )  -  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) ) ) )
3114oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( B  +  (
1  /  2 ) ) )  -  A
)  =  ( ( |_ `  ( A  +  ( 1  / 
2 ) ) )  -  A ) )
3231oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  A )  -  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  =  ( ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A )  -  ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  B ) ) )
3332fveq2d 6195 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( |_ `  ( B  +  (
1  /  2 ) ) )  -  A
)  -  ( ( |_ `  ( B  +  ( 1  / 
2 ) ) )  -  B ) ) )  =  ( abs `  ( ( ( |_
`  ( A  +  ( 1  /  2
) ) )  -  A )  -  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) ) ) )
3418, 11abssubd 14192 . . . . 5  |-  ( ph  ->  ( abs `  (
( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
)  -  ( ( |_ `  ( B  +  ( 1  / 
2 ) ) )  -  B ) ) )  =  ( abs `  ( ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  B )  -  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) ) )
3530, 33, 343eqtrd 2660 . . . 4  |-  ( ph  ->  ( abs `  ( B  -  A )
)  =  ( abs `  ( ( ( |_
`  ( B  +  ( 1  /  2
) ) )  -  B )  -  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) ) )
3626leidd 10594 . . . 4  |-  ( ph  ->  ( abs `  ( B  -  A )
)  <_  ( abs `  ( B  -  A
) ) )
3735, 36eqbrtrrd 4677 . . 3  |-  ( ph  ->  ( abs `  (
( ( |_ `  ( B  +  (
1  /  2 ) ) )  -  B
)  -  ( ( |_ `  ( A  +  ( 1  / 
2 ) ) )  -  A ) ) )  <_  ( abs `  ( B  -  A
) ) )
3822, 24, 26, 27, 37letrd 10194 . 2  |-  ( ph  ->  ( abs `  (
( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) ) )  <_  ( abs `  ( B  -  A )
) )
39 dnibndlem2.1 . . 3  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
4039, 16, 1dnibndlem1 32468 . 2  |-  ( ph  ->  ( ( abs `  (
( T `  B
)  -  ( T `
 A ) ) )  <_  ( abs `  ( B  -  A
) )  <->  ( abs `  ( ( abs `  (
( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) ) ) )  <_  ( abs `  ( B  -  A )
) ) )
4138, 40mpbird 247 1  |-  ( ph  ->  ( abs `  (
( T `  B
)  -  ( T `
 A ) ) )  <_  ( abs `  ( B  -  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   |_cfl 12591   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  dnibndlem13  32480
  Copyright terms: Public domain W3C validator