Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnival Structured version   Visualization version   Unicode version

Theorem dnival 32461
Description: Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnival.1  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
Assertion
Ref Expression
dnival  |-  ( A  e.  RR  ->  ( T `  A )  =  ( abs `  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    T( x)

Proof of Theorem dnival
StepHypRef Expression
1 oveq1 6657 . . . . 5  |-  ( x  =  A  ->  (
x  +  ( 1  /  2 ) )  =  ( A  +  ( 1  /  2
) ) )
21fveq2d 6195 . . . 4  |-  ( x  =  A  ->  ( |_ `  ( x  +  ( 1  /  2
) ) )  =  ( |_ `  ( A  +  ( 1  /  2 ) ) ) )
3 id 22 . . . 4  |-  ( x  =  A  ->  x  =  A )
42, 3oveq12d 6668 . . 3  |-  ( x  =  A  ->  (
( |_ `  (
x  +  ( 1  /  2 ) ) )  -  x )  =  ( ( |_
`  ( A  +  ( 1  /  2
) ) )  -  A ) )
54fveq2d 6195 . 2  |-  ( x  =  A  ->  ( abs `  ( ( |_
`  ( x  +  ( 1  /  2
) ) )  -  x ) )  =  ( abs `  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) )
6 dnival.1 . 2  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
7 fvex 6201 . 2  |-  ( abs `  ( ( |_ `  ( A  +  (
1  /  2 ) ) )  -  A
) )  e.  _V
85, 6, 7fvmpt 6282 1  |-  ( A  e.  RR  ->  ( T `  A )  =  ( abs `  (
( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    - cmin 10266    / cdiv 10684   2c2 11070   |_cfl 12591   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  dnicld2  32463  dnizeq0  32465  dnizphlfeqhlf  32466  dnibndlem1  32468  knoppcnlem4  32486
  Copyright terms: Public domain W3C validator