Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem4 Structured version   Visualization version   Unicode version

Theorem knoppcnlem4 32486
Description: Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem4.t  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
knoppcnlem4.f  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
knoppcnlem4.n  |-  ( ph  ->  N  e.  NN )
knoppcnlem4.1  |-  ( ph  ->  C  e.  RR )
knoppcnlem4.2  |-  ( ph  ->  A  e.  RR )
knoppcnlem4.3  |-  ( ph  ->  M  e.  NN0 )
Assertion
Ref Expression
knoppcnlem4  |-  ( ph  ->  ( abs `  (
( F `  A
) `  M )
)  <_  ( (
m  e.  NN0  |->  ( ( abs `  C ) ^ m ) ) `
 M ) )
Distinct variable groups:    A, n, y    x, A    C, m    C, n, y    m, M   
n, M    x, M    n, N, y    x, N    T, n, y    ph, m    ph, n, y
Allowed substitution hints:    ph( x)    A( m)    C( x)    T( x, m)    F( x, y, m, n)    M( y)    N( m)

Proof of Theorem knoppcnlem4
StepHypRef Expression
1 knoppcnlem4.f . . . 4  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
2 knoppcnlem4.2 . . . 4  |-  ( ph  ->  A  e.  RR )
3 knoppcnlem4.3 . . . 4  |-  ( ph  ->  M  e.  NN0 )
41, 2, 3knoppcnlem1 32483 . . 3  |-  ( ph  ->  ( ( F `  A ) `  M
)  =  ( ( C ^ M )  x.  ( T `  ( ( ( 2  x.  N ) ^ M )  x.  A
) ) ) )
54fveq2d 6195 . 2  |-  ( ph  ->  ( abs `  (
( F `  A
) `  M )
)  =  ( abs `  ( ( C ^ M )  x.  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) ) ) )
6 knoppcnlem4.1 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
76recnd 10068 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
87, 3expcld 13008 . . . . . 6  |-  ( ph  ->  ( C ^ M
)  e.  CC )
9 knoppcnlem4.t . . . . . . . 8  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
10 2re 11090 . . . . . . . . . . . 12  |-  2  e.  RR
1110a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
12 knoppcnlem4.n . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
13 nnre 11027 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR )
1412, 13syl 17 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  RR )
1511, 14remulcld 10070 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  N
)  e.  RR )
1615, 3reexpcld 13025 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N ) ^ M
)  e.  RR )
1716, 2remulcld 10070 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ M )  x.  A
)  e.  RR )
189, 17dnicld2 32463 . . . . . . 7  |-  ( ph  ->  ( T `  (
( ( 2  x.  N ) ^ M
)  x.  A ) )  e.  RR )
1918recnd 10068 . . . . . 6  |-  ( ph  ->  ( T `  (
( ( 2  x.  N ) ^ M
)  x.  A ) )  e.  CC )
208, 19absmuld 14193 . . . . 5  |-  ( ph  ->  ( abs `  (
( C ^ M
)  x.  ( T `
 ( ( ( 2  x.  N ) ^ M )  x.  A ) ) ) )  =  ( ( abs `  ( C ^ M ) )  x.  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) ) ) )
217, 3absexpd 14191 . . . . . 6  |-  ( ph  ->  ( abs `  ( C ^ M ) )  =  ( ( abs `  C ) ^ M
) )
2221oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( abs `  ( C ^ M ) )  x.  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) ) )  =  ( ( ( abs `  C
) ^ M )  x.  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) ) ) )
2320, 22eqtrd 2656 . . . 4  |-  ( ph  ->  ( abs `  (
( C ^ M
)  x.  ( T `
 ( ( ( 2  x.  N ) ^ M )  x.  A ) ) ) )  =  ( ( ( abs `  C
) ^ M )  x.  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) ) ) )
2419abscld 14175 . . . . . 6  |-  ( ph  ->  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) )  e.  RR )
25 1red 10055 . . . . . 6  |-  ( ph  ->  1  e.  RR )
267abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  C
)  e.  RR )
2726, 3reexpcld 13025 . . . . . 6  |-  ( ph  ->  ( ( abs `  C
) ^ M )  e.  RR )
287absge0d 14183 . . . . . . 7  |-  ( ph  ->  0  <_  ( abs `  C ) )
2926, 3, 28expge0d 13026 . . . . . 6  |-  ( ph  ->  0  <_  ( ( abs `  C ) ^ M ) )
309dnival 32461 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  N ) ^ M
)  x.  A )  e.  RR  ->  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) )  =  ( abs `  (
( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) ) ) )
3117, 30syl 17 . . . . . . . . 9  |-  ( ph  ->  ( T `  (
( ( 2  x.  N ) ^ M
)  x.  A ) )  =  ( abs `  ( ( |_ `  ( ( ( ( 2  x.  N ) ^ M )  x.  A )  +  ( 1  /  2 ) ) )  -  (
( ( 2  x.  N ) ^ M
)  x.  A ) ) ) )
3231fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) )  =  ( abs `  ( abs `  (
( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) ) ) ) )
33 halfre 11246 . . . . . . . . . . . . . 14  |-  ( 1  /  2 )  e.  RR
3433a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
3517, 34readdcld 10069 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ M )  x.  A )  +  ( 1  /  2 ) )  e.  RR )
36 reflcl 12597 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) )  e.  RR  ->  ( |_ `  ( ( ( ( 2  x.  N
) ^ M )  x.  A )  +  ( 1  /  2
) ) )  e.  RR )
3735, 36syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  e.  RR )
3837, 17resubcld 10458 . . . . . . . . . 10  |-  ( ph  ->  ( ( |_ `  ( ( ( ( 2  x.  N ) ^ M )  x.  A )  +  ( 1  /  2 ) ) )  -  (
( ( 2  x.  N ) ^ M
)  x.  A ) )  e.  RR )
3938recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( ( |_ `  ( ( ( ( 2  x.  N ) ^ M )  x.  A )  +  ( 1  /  2 ) ) )  -  (
( ( 2  x.  N ) ^ M
)  x.  A ) )  e.  CC )
40 absidm 14063 . . . . . . . . 9  |-  ( ( ( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) )  e.  CC  ->  ( abs `  ( abs `  (
( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) ) ) )  =  ( abs `  ( ( |_ `  ( ( ( ( 2  x.  N ) ^ M
)  x.  A )  +  ( 1  / 
2 ) ) )  -  ( ( ( 2  x.  N ) ^ M )  x.  A ) ) ) )
4139, 40syl 17 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( abs `  ( ( |_
`  ( ( ( ( 2  x.  N
) ^ M )  x.  A )  +  ( 1  /  2
) ) )  -  ( ( ( 2  x.  N ) ^ M )  x.  A
) ) ) )  =  ( abs `  (
( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) ) ) )
4232, 41eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) )  =  ( abs `  ( ( |_ `  ( ( ( ( 2  x.  N ) ^ M )  x.  A )  +  ( 1  /  2 ) ) )  -  (
( ( 2  x.  N ) ^ M
)  x.  A ) ) ) )
4331, 18eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) ) )  e.  RR )
44 rddif 14080 . . . . . . . . 9  |-  ( ( ( ( 2  x.  N ) ^ M
)  x.  A )  e.  RR  ->  ( abs `  ( ( |_
`  ( ( ( ( 2  x.  N
) ^ M )  x.  A )  +  ( 1  /  2
) ) )  -  ( ( ( 2  x.  N ) ^ M )  x.  A
) ) )  <_ 
( 1  /  2
) )
4517, 44syl 17 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) ) )  <_  ( 1  /  2 ) )
46 halflt1 11250 . . . . . . . . . 10  |-  ( 1  /  2 )  <  1
47 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
4833, 47ltlei 10159 . . . . . . . . . 10  |-  ( ( 1  /  2 )  <  1  ->  (
1  /  2 )  <_  1 )
4946, 48ax-mp 5 . . . . . . . . 9  |-  ( 1  /  2 )  <_ 
1
5049a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 1  /  2
)  <_  1 )
5143, 34, 25, 45, 50letrd 10194 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( |_ `  (
( ( ( 2  x.  N ) ^ M )  x.  A
)  +  ( 1  /  2 ) ) )  -  ( ( ( 2  x.  N
) ^ M )  x.  A ) ) )  <_  1 )
5242, 51eqbrtrd 4675 . . . . . 6  |-  ( ph  ->  ( abs `  ( T `  ( (
( 2  x.  N
) ^ M )  x.  A ) ) )  <_  1 )
5324, 25, 27, 29, 52lemul2ad 10964 . . . . 5  |-  ( ph  ->  ( ( ( abs `  C ) ^ M
)  x.  ( abs `  ( T `  (
( ( 2  x.  N ) ^ M
)  x.  A ) ) ) )  <_ 
( ( ( abs `  C ) ^ M
)  x.  1 ) )
54 ax-1rid 10006 . . . . . 6  |-  ( ( ( abs `  C
) ^ M )  e.  RR  ->  (
( ( abs `  C
) ^ M )  x.  1 )  =  ( ( abs `  C
) ^ M ) )
5527, 54syl 17 . . . . 5  |-  ( ph  ->  ( ( ( abs `  C ) ^ M
)  x.  1 )  =  ( ( abs `  C ) ^ M
) )
5653, 55breqtrd 4679 . . . 4  |-  ( ph  ->  ( ( ( abs `  C ) ^ M
)  x.  ( abs `  ( T `  (
( ( 2  x.  N ) ^ M
)  x.  A ) ) ) )  <_ 
( ( abs `  C
) ^ M ) )
5723, 56eqbrtrd 4675 . . 3  |-  ( ph  ->  ( abs `  (
( C ^ M
)  x.  ( T `
 ( ( ( 2  x.  N ) ^ M )  x.  A ) ) ) )  <_  ( ( abs `  C ) ^ M ) )
58 eqidd 2623 . . . . 5  |-  ( ph  ->  ( m  e.  NN0  |->  ( ( abs `  C
) ^ m ) )  =  ( m  e.  NN0  |->  ( ( abs `  C ) ^ m ) ) )
59 oveq2 6658 . . . . . 6  |-  ( m  =  M  ->  (
( abs `  C
) ^ m )  =  ( ( abs `  C ) ^ M
) )
6059adantl 482 . . . . 5  |-  ( (
ph  /\  m  =  M )  ->  (
( abs `  C
) ^ m )  =  ( ( abs `  C ) ^ M
) )
6158, 60, 3, 27fvmptd 6288 . . . 4  |-  ( ph  ->  ( ( m  e. 
NN0  |->  ( ( abs `  C ) ^ m
) ) `  M
)  =  ( ( abs `  C ) ^ M ) )
6261eqcomd 2628 . . 3  |-  ( ph  ->  ( ( abs `  C
) ^ M )  =  ( ( m  e.  NN0  |->  ( ( abs `  C ) ^ m ) ) `
 M ) )
6357, 62breqtrd 4679 . 2  |-  ( ph  ->  ( abs `  (
( C ^ M
)  x.  ( T `
 ( ( ( 2  x.  N ) ^ M )  x.  A ) ) ) )  <_  ( (
m  e.  NN0  |->  ( ( abs `  C ) ^ m ) ) `
 M ) )
645, 63eqbrtrd 4675 1  |-  ( ph  ->  ( abs `  (
( F `  A
) `  M )
)  <_  ( (
m  e.  NN0  |->  ( ( abs `  C ) ^ m ) ) `
 M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   |_cfl 12591   ^cexp 12860   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  knoppcnlem6  32488
  Copyright terms: Public domain W3C validator