Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapntrcls Structured version   Visualization version   Unicode version

Theorem dssmapntrcls 38426
Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 31189. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x  |-  X  = 
U. J
dssmapclsntr.k  |-  K  =  ( cls `  J
)
dssmapclsntr.i  |-  I  =  ( int `  J
)
dssmapclsntr.o  |-  O  =  ( b  e.  _V  |->  ( f  e.  ( ~P b  ^m  ~P b )  |->  ( s  e.  ~P b  |->  ( b  \  ( f `
 ( b  \ 
s ) ) ) ) ) )
dssmapclsntr.d  |-  D  =  ( O `  X
)
Assertion
Ref Expression
dssmapntrcls  |-  ( J  e.  Top  ->  I  =  ( D `  K ) )
Distinct variable groups:    J, b,
f, s    f, K, s    X, b, f, s
Allowed substitution hints:    D( f, s, b)    I( f, s, b)    K( b)    O( f, s, b)

Proof of Theorem dssmapntrcls
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 vpwex 4849 . . . . . . 7  |-  ~P t  e.  _V
21inex2 4800 . . . . . 6  |-  ( J  i^i  ~P t )  e.  _V
32uniex 6953 . . . . 5  |-  U. ( J  i^i  ~P t )  e.  _V
43rgenw 2924 . . . 4  |-  A. t  e.  ~P  X U. ( J  i^i  ~P t )  e.  _V
5 nfcv 2764 . . . . 5  |-  F/_ t ~P X
65fnmptf 6016 . . . 4  |-  ( A. t  e.  ~P  X U. ( J  i^i  ~P t )  e.  _V  ->  ( t  e.  ~P X  |->  U. ( J  i^i  ~P t ) )  Fn 
~P X )
74, 6mp1i 13 . . 3  |-  ( J  e.  Top  ->  (
t  e.  ~P X  |-> 
U. ( J  i^i  ~P t ) )  Fn 
~P X )
8 dssmapclsntr.i . . . . 5  |-  I  =  ( int `  J
)
9 dssmapclsntr.x . . . . . 6  |-  X  = 
U. J
109ntrfval 20828 . . . . 5  |-  ( J  e.  Top  ->  ( int `  J )  =  ( t  e.  ~P X  |->  U. ( J  i^i  ~P t ) ) )
118, 10syl5eq 2668 . . . 4  |-  ( J  e.  Top  ->  I  =  ( t  e. 
~P X  |->  U. ( J  i^i  ~P t ) ) )
1211fneq1d 5981 . . 3  |-  ( J  e.  Top  ->  (
I  Fn  ~P X  <->  ( t  e.  ~P X  |-> 
U. ( J  i^i  ~P t ) )  Fn 
~P X ) )
137, 12mpbird 247 . 2  |-  ( J  e.  Top  ->  I  Fn  ~P X )
14 dssmapclsntr.o . . . . . 6  |-  O  =  ( b  e.  _V  |->  ( f  e.  ( ~P b  ^m  ~P b )  |->  ( s  e.  ~P b  |->  ( b  \  ( f `
 ( b  \ 
s ) ) ) ) ) )
15 dssmapclsntr.d . . . . . 6  |-  D  =  ( O `  X
)
169topopn 20711 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
1714, 15, 16dssmapf1od 38315 . . . . 5  |-  ( J  e.  Top  ->  D : ( ~P X  ^m  ~P X ) -1-1-onto-> ( ~P X  ^m  ~P X
) )
18 f1of 6137 . . . . 5  |-  ( D : ( ~P X  ^m  ~P X ) -1-1-onto-> ( ~P X  ^m  ~P X
)  ->  D :
( ~P X  ^m  ~P X ) --> ( ~P X  ^m  ~P X
) )
1917, 18syl 17 . . . 4  |-  ( J  e.  Top  ->  D : ( ~P X  ^m  ~P X ) --> ( ~P X  ^m  ~P X ) )
20 dssmapclsntr.k . . . . 5  |-  K  =  ( cls `  J
)
219, 20clselmap 38425 . . . 4  |-  ( J  e.  Top  ->  K  e.  ( ~P X  ^m  ~P X ) )
2219, 21ffvelrnd 6360 . . 3  |-  ( J  e.  Top  ->  ( D `  K )  e.  ( ~P X  ^m  ~P X ) )
23 elmapfn 7880 . . 3  |-  ( ( D `  K )  e.  ( ~P X  ^m  ~P X )  -> 
( D `  K
)  Fn  ~P X
)
2422, 23syl 17 . 2  |-  ( J  e.  Top  ->  ( D `  K )  Fn  ~P X )
25 elpwi 4168 . . . . 5  |-  ( t  e.  ~P X  -> 
t  C_  X )
269ntrval2 20855 . . . . 5  |-  ( ( J  e.  Top  /\  t  C_  X )  -> 
( ( int `  J
) `  t )  =  ( X  \ 
( ( cls `  J
) `  ( X  \  t ) ) ) )
2725, 26sylan2 491 . . . 4  |-  ( ( J  e.  Top  /\  t  e.  ~P X
)  ->  ( ( int `  J ) `  t )  =  ( X  \  ( ( cls `  J ) `
 ( X  \ 
t ) ) ) )
288fveq1i 6192 . . . 4  |-  ( I `
 t )  =  ( ( int `  J
) `  t )
2920fveq1i 6192 . . . . 5  |-  ( K `
 ( X  \ 
t ) )  =  ( ( cls `  J
) `  ( X  \  t ) )
3029difeq2i 3725 . . . 4  |-  ( X 
\  ( K `  ( X  \  t
) ) )  =  ( X  \  (
( cls `  J
) `  ( X  \  t ) ) )
3127, 28, 303eqtr4g 2681 . . 3  |-  ( ( J  e.  Top  /\  t  e.  ~P X
)  ->  ( I `  t )  =  ( X  \  ( K `
 ( X  \ 
t ) ) ) )
3216adantr 481 . . . 4  |-  ( ( J  e.  Top  /\  t  e.  ~P X
)  ->  X  e.  J )
3321adantr 481 . . . 4  |-  ( ( J  e.  Top  /\  t  e.  ~P X
)  ->  K  e.  ( ~P X  ^m  ~P X ) )
34 eqid 2622 . . . 4  |-  ( D `
 K )  =  ( D `  K
)
35 simpr 477 . . . 4  |-  ( ( J  e.  Top  /\  t  e.  ~P X
)  ->  t  e.  ~P X )
36 eqid 2622 . . . 4  |-  ( ( D `  K ) `
 t )  =  ( ( D `  K ) `  t
)
3714, 15, 32, 33, 34, 35, 36dssmapfv3d 38313 . . 3  |-  ( ( J  e.  Top  /\  t  e.  ~P X
)  ->  ( ( D `  K ) `  t )  =  ( X  \  ( K `
 ( X  \ 
t ) ) ) )
3831, 37eqtr4d 2659 . 2  |-  ( ( J  e.  Top  /\  t  e.  ~P X
)  ->  ( I `  t )  =  ( ( D `  K
) `  t )
)
3913, 24, 38eqfnfvd 6314 1  |-  ( J  e.  Top  ->  I  =  ( D `  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Topctop 20698   intcnt 20821   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  dssmapclsntr  38427
  Copyright terms: Public domain W3C validator