MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseri Structured version   Visualization version   Unicode version

Theorem iseri 7769
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 7768, which avoids the need to provide a "dummy antecedent"  ph if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
iseri.1  |-  Rel  R
iseri.2  |-  ( x R y  ->  y R x )
iseri.3  |-  ( ( x R y  /\  y R z )  ->  x R z )
iseri.4  |-  ( x  e.  A  <->  x R x )
Assertion
Ref Expression
iseri  |-  R  Er  A
Distinct variable groups:    x, y,
z, R    x, A
Allowed substitution hints:    A( y, z)

Proof of Theorem iseri
StepHypRef Expression
1 iseri.1 . . . 4  |-  Rel  R
21a1i 11 . . 3  |-  ( T. 
->  Rel  R )
3 iseri.2 . . . 4  |-  ( x R y  ->  y R x )
43adantl 482 . . 3  |-  ( ( T.  /\  x R y )  ->  y R x )
5 iseri.3 . . . 4  |-  ( ( x R y  /\  y R z )  ->  x R z )
65adantl 482 . . 3  |-  ( ( T.  /\  ( x R y  /\  y R z ) )  ->  x R z )
7 iseri.4 . . . 4  |-  ( x  e.  A  <->  x R x )
87a1i 11 . . 3  |-  ( T. 
->  ( x  e.  A  <->  x R x ) )
92, 4, 6, 8iserd 7768 . 2  |-  ( T. 
->  R  Er  A
)
109trud 1493 1  |-  R  Er  A
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   T. wtru 1484    e. wcel 1990   class class class wbr 4653   Rel wrel 5119    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-er 7742
This theorem is referenced by:  eqer  7777  0er  7780  ecopover  7851  ener  8002  gicer  17718  phtpcer  22794  vitalilem1  23376  erclwwlks  26937  erclwwlksn  26949
  Copyright terms: Public domain W3C validator