Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpst Structured version   Visualization version   Unicode version

Theorem elmpst 31433
Description: Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v  |-  V  =  (mDV `  T )
mpstval.e  |-  E  =  (mEx `  T )
mpstval.p  |-  P  =  (mPreSt `  T )
Assertion
Ref Expression
elmpst  |-  ( <. D ,  H ,  A >.  e.  P  <->  ( ( D  C_  V  /\  `' D  =  D )  /\  ( H  C_  E  /\  H  e.  Fin )  /\  A  e.  E
) )

Proof of Theorem elmpst
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 opelxp 5146 . . 3  |-  ( <. <. D ,  H >. ,  A >.  e.  (
( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E
)  <->  ( <. D ,  H >.  e.  ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  /\  A  e.  E )
)
2 opelxp 5146 . . . . 5  |-  ( <. D ,  H >.  e.  ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  <->  ( D  e.  { d  e.  ~P V  |  `' d  =  d }  /\  H  e.  ( ~P E  i^i  Fin ) ) )
3 cnveq 5296 . . . . . . . . 9  |-  ( d  =  D  ->  `' d  =  `' D
)
4 id 22 . . . . . . . . 9  |-  ( d  =  D  ->  d  =  D )
53, 4eqeq12d 2637 . . . . . . . 8  |-  ( d  =  D  ->  ( `' d  =  d  <->  `' D  =  D ) )
65elrab 3363 . . . . . . 7  |-  ( D  e.  { d  e. 
~P V  |  `' d  =  d }  <->  ( D  e.  ~P V  /\  `' D  =  D
) )
7 mpstval.v . . . . . . . . . 10  |-  V  =  (mDV `  T )
8 fvex 6201 . . . . . . . . . 10  |-  (mDV `  T )  e.  _V
97, 8eqeltri 2697 . . . . . . . . 9  |-  V  e. 
_V
109elpw2 4828 . . . . . . . 8  |-  ( D  e.  ~P V  <->  D  C_  V
)
1110anbi1i 731 . . . . . . 7  |-  ( ( D  e.  ~P V  /\  `' D  =  D
)  <->  ( D  C_  V  /\  `' D  =  D ) )
126, 11bitri 264 . . . . . 6  |-  ( D  e.  { d  e. 
~P V  |  `' d  =  d }  <->  ( D  C_  V  /\  `' D  =  D
) )
13 elfpw 8268 . . . . . 6  |-  ( H  e.  ( ~P E  i^i  Fin )  <->  ( H  C_  E  /\  H  e. 
Fin ) )
1412, 13anbi12i 733 . . . . 5  |-  ( ( D  e.  { d  e.  ~P V  |  `' d  =  d }  /\  H  e.  ( ~P E  i^i  Fin ) )  <->  ( ( D  C_  V  /\  `' D  =  D )  /\  ( H  C_  E  /\  H  e.  Fin ) ) )
152, 14bitri 264 . . . 4  |-  ( <. D ,  H >.  e.  ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  <->  ( ( D  C_  V  /\  `' D  =  D )  /\  ( H  C_  E  /\  H  e.  Fin ) ) )
1615anbi1i 731 . . 3  |-  ( (
<. D ,  H >.  e.  ( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  /\  A  e.  E )  <->  ( (
( D  C_  V  /\  `' D  =  D
)  /\  ( H  C_  E  /\  H  e. 
Fin ) )  /\  A  e.  E )
)
171, 16bitri 264 . 2  |-  ( <. <. D ,  H >. ,  A >.  e.  (
( { d  e. 
~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E
)  <->  ( ( ( D  C_  V  /\  `' D  =  D
)  /\  ( H  C_  E  /\  H  e. 
Fin ) )  /\  A  e.  E )
)
18 df-ot 4186 . . 3  |-  <. D ,  H ,  A >.  = 
<. <. D ,  H >. ,  A >.
19 mpstval.e . . . 4  |-  E  =  (mEx `  T )
20 mpstval.p . . . 4  |-  P  =  (mPreSt `  T )
217, 19, 20mpstval 31432 . . 3  |-  P  =  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E )
2218, 21eleq12i 2694 . 2  |-  ( <. D ,  H ,  A >.  e.  P  <->  <. <. D ,  H >. ,  A >.  e.  ( ( { d  e.  ~P V  |  `' d  =  d }  X.  ( ~P E  i^i  Fin ) )  X.  E ) )
23 df-3an 1039 . 2  |-  ( ( ( D  C_  V  /\  `' D  =  D
)  /\  ( H  C_  E  /\  H  e. 
Fin )  /\  A  e.  E )  <->  ( (
( D  C_  V  /\  `' D  =  D
)  /\  ( H  C_  E  /\  H  e. 
Fin ) )  /\  A  e.  E )
)
2417, 22, 233bitr4i 292 1  |-  ( <. D ,  H ,  A >.  e.  P  <->  ( ( D  C_  V  /\  `' D  =  D )  /\  ( H  C_  E  /\  H  e.  Fin )  /\  A  e.  E
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   <.cop 4183   <.cotp 4185    X. cxp 5112   `'ccnv 5113   ` cfv 5888   Fincfn 7955  mExcmex 31364  mDVcmdv 31365  mPreStcmpst 31370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mpst 31390
This theorem is referenced by:  msrval  31435  msrf  31439  mclsssvlem  31459  mclsax  31466  mclsind  31467  mthmpps  31479  mclsppslem  31480  mclspps  31481
  Copyright terms: Public domain W3C validator