Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfix Structured version   Visualization version   Unicode version

Theorem elfix 32010
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
elfix.1  |-  A  e. 
_V
Assertion
Ref Expression
elfix  |-  ( A  e.  Fix R  <->  A R A )

Proof of Theorem elfix
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-fix 31966 . . 3  |-  Fix R  =  dom  ( R  i^i  _I  )
21eleq2i 2693 . 2  |-  ( A  e.  Fix R  <->  A  e.  dom  ( R  i^i  _I  ) )
3 elfix.1 . . . 4  |-  A  e. 
_V
43eldm 5321 . . 3  |-  ( A  e.  dom  ( R  i^i  _I  )  <->  E. x  A ( R  i^i  _I  ) x )
5 brin 4704 . . . . 5  |-  ( A ( R  i^i  _I  ) x  <->  ( A R x  /\  A  _I  x ) )
6 ancom 466 . . . . 5  |-  ( ( A R x  /\  A  _I  x )  <->  ( A  _I  x  /\  A R x ) )
7 vex 3203 . . . . . . . 8  |-  x  e. 
_V
87ideq 5274 . . . . . . 7  |-  ( A  _I  x  <->  A  =  x )
9 eqcom 2629 . . . . . . 7  |-  ( A  =  x  <->  x  =  A )
108, 9bitri 264 . . . . . 6  |-  ( A  _I  x  <->  x  =  A )
1110anbi1i 731 . . . . 5  |-  ( ( A  _I  x  /\  A R x )  <->  ( x  =  A  /\  A R x ) )
125, 6, 113bitri 286 . . . 4  |-  ( A ( R  i^i  _I  ) x  <->  ( x  =  A  /\  A R x ) )
1312exbii 1774 . . 3  |-  ( E. x  A ( R  i^i  _I  ) x  <->  E. x ( x  =  A  /\  A R x ) )
144, 13bitri 264 . 2  |-  ( A  e.  dom  ( R  i^i  _I  )  <->  E. x
( x  =  A  /\  A R x ) )
15 breq2 4657 . . 3  |-  ( x  =  A  ->  ( A R x  <->  A R A ) )
163, 15ceqsexv 3242 . 2  |-  ( E. x ( x  =  A  /\  A R x )  <->  A R A )
172, 14, 163bitri 286 1  |-  ( A  e.  Fix R  <->  A R A )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573   class class class wbr 4653    _I cid 5023   dom cdm 5114   Fixcfix 31942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-dm 5124  df-fix 31966
This theorem is referenced by:  elfix2  32011  dffix2  32012  fixcnv  32015  ellimits  32017  elfuns  32022  dfrecs2  32057  dfrdg4  32058
  Copyright terms: Public domain W3C validator