Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem2OLD Structured version   Visualization version   Unicode version

Theorem elghomlem2OLD 33685
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 33686. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1  |-  S  =  { f  |  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) }
Assertion
Ref Expression
elghomlem2OLD  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
Distinct variable groups:    x, f,
y, F    f, G, x, y    f, H, x, y
Allowed substitution hints:    S( x, y, f)

Proof of Theorem elghomlem2OLD
StepHypRef Expression
1 elghomlem1OLD.1 . . . 4  |-  S  =  { f  |  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) }
21elghomlem1OLD 33684 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( G GrpOpHom  H )  =  S )
32eleq2d 2687 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  F  e.  S
) )
4 elex 3212 . . . . 5  |-  ( F  e.  S  ->  F  e.  _V )
5 feq1 6026 . . . . . . . 8  |-  ( f  =  F  ->  (
f : ran  G --> ran  H  <->  F : ran  G --> ran  H ) )
6 fveq1 6190 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
7 fveq1 6190 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
86, 7oveq12d 6668 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( f `  x
) H ( f `
 y ) )  =  ( ( F `
 x ) H ( F `  y
) ) )
9 fveq1 6190 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  ( x G y ) )  =  ( F `  ( x G y ) ) )
108, 9eqeq12d 2637 . . . . . . . . 9  |-  ( f  =  F  ->  (
( ( f `  x ) H ( f `  y ) )  =  ( f `
 ( x G y ) )  <->  ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) )
11102ralbidv 2989 . . . . . . . 8  |-  ( f  =  F  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `
 ( x G y ) )  <->  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) )
125, 11anbi12d 747 . . . . . . 7  |-  ( f  =  F  ->  (
( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x
) H ( f `
 y ) )  =  ( f `  ( x G y ) ) )  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
1312, 1elab2g 3353 . . . . . 6  |-  ( F  e.  _V  ->  ( F  e.  S  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
1413biimpd 219 . . . . 5  |-  ( F  e.  _V  ->  ( F  e.  S  ->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) ) )
154, 14mpcom 38 . . . 4  |-  ( F  e.  S  ->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) )
16 rnexg 7098 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ran  G  e. 
_V )
17 fex 6490 . . . . . . . 8  |-  ( ( F : ran  G --> ran  H  /\  ran  G  e.  _V )  ->  F  e.  _V )
1817expcom 451 . . . . . . 7  |-  ( ran 
G  e.  _V  ->  ( F : ran  G --> ran  H  ->  F  e.  _V ) )
1916, 18syl 17 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( F : ran  G --> ran  H  ->  F  e.  _V )
)
2019adantrd 484 . . . . 5  |-  ( G  e.  GrpOp  ->  ( ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) )  ->  F  e.  _V ) )
2113biimprd 238 . . . . 5  |-  ( F  e.  _V  ->  (
( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x
) H ( F `
 y ) )  =  ( F `  ( x G y ) ) )  ->  F  e.  S )
)
2220, 21syli 39 . . . 4  |-  ( G  e.  GrpOp  ->  ( ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) )  ->  F  e.  S
) )
2315, 22impbid2 216 . . 3  |-  ( G  e.  GrpOp  ->  ( F  e.  S  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
2423adantr 481 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  S  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
253, 24bitrd 268 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343   GrpOpHom cghomOLD 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ghomOLD 33683
This theorem is referenced by:  elghomOLD  33686
  Copyright terms: Public domain W3C validator