Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem1OLD Structured version   Visualization version   Unicode version

Theorem elghomlem1OLD 33684
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 33686. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1  |-  S  =  { f  |  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) }
Assertion
Ref Expression
elghomlem1OLD  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( G GrpOpHom  H )  =  S )
Distinct variable groups:    x, f,
y, G    f, H, x, y
Allowed substitution hints:    S( x, y, f)

Proof of Theorem elghomlem1OLD
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnexg 7098 . . 3  |-  ( G  e.  GrpOp  ->  ran  G  e. 
_V )
2 rnexg 7098 . . 3  |-  ( H  e.  GrpOp  ->  ran  H  e. 
_V )
3 elghomlem1OLD.1 . . . 4  |-  S  =  { f  |  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) }
43fabexg 7122 . . 3  |-  ( ( ran  G  e.  _V  /\ 
ran  H  e.  _V )  ->  S  e.  _V )
51, 2, 4syl2an 494 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  S  e.  _V )
6 rneq 5351 . . . . . 6  |-  ( g  =  G  ->  ran  g  =  ran  G )
76feq2d 6031 . . . . 5  |-  ( g  =  G  ->  (
f : ran  g --> ran  h  <->  f : ran  G --> ran  h ) )
8 oveq 6656 . . . . . . . . 9  |-  ( g  =  G  ->  (
x g y )  =  ( x G y ) )
98fveq2d 6195 . . . . . . . 8  |-  ( g  =  G  ->  (
f `  ( x
g y ) )  =  ( f `  ( x G y ) ) )
109eqeq2d 2632 . . . . . . 7  |-  ( g  =  G  ->  (
( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x g y ) )  <->  ( (
f `  x )
h ( f `  y ) )  =  ( f `  (
x G y ) ) ) )
116, 10raleqbidv 3152 . . . . . 6  |-  ( g  =  G  ->  ( A. y  e.  ran  g ( ( f `
 x ) h ( f `  y
) )  =  ( f `  ( x g y ) )  <->  A. y  e.  ran  G ( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) ) ) )
126, 11raleqbidv 3152 . . . . 5  |-  ( g  =  G  ->  ( A. x  e.  ran  g A. y  e.  ran  g ( ( f `
 x ) h ( f `  y
) )  =  ( f `  ( x g y ) )  <->  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) ) ) )
137, 12anbi12d 747 . . . 4  |-  ( g  =  G  ->  (
( f : ran  g
--> ran  h  /\  A. x  e.  ran  g A. y  e.  ran  g ( ( f `  x
) h ( f `
 y ) )  =  ( f `  ( x g y ) ) )  <->  ( f : ran  G --> ran  h  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) ) ) ) )
1413abbidv 2741 . . 3  |-  ( g  =  G  ->  { f  |  ( f : ran  g --> ran  h  /\  A. x  e.  ran  g A. y  e.  ran  g ( ( f `
 x ) h ( f `  y
) )  =  ( f `  ( x g y ) ) ) }  =  {
f  |  ( f : ran  G --> ran  h  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) ) ) } )
15 rneq 5351 . . . . . . 7  |-  ( h  =  H  ->  ran  h  =  ran  H )
1615feq3d 6032 . . . . . 6  |-  ( h  =  H  ->  (
f : ran  G --> ran  h  <->  f : ran  G --> ran  H ) )
17 oveq 6656 . . . . . . . 8  |-  ( h  =  H  ->  (
( f `  x
) h ( f `
 y ) )  =  ( ( f `
 x ) H ( f `  y
) ) )
1817eqeq1d 2624 . . . . . . 7  |-  ( h  =  H  ->  (
( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) )  <->  ( (
f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) )
19182ralbidv 2989 . . . . . 6  |-  ( h  =  H  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) )  <->  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `  (
x G y ) ) ) )
2016, 19anbi12d 747 . . . . 5  |-  ( h  =  H  ->  (
( f : ran  G --> ran  h  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x
) h ( f `
 y ) )  =  ( f `  ( x G y ) ) )  <->  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `
 ( x G y ) ) ) ) )
2120abbidv 2741 . . . 4  |-  ( h  =  H  ->  { f  |  ( f : ran  G --> ran  h  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) ) ) }  =  { f  |  ( f : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) H ( f `  y ) )  =  ( f `
 ( x G y ) ) ) } )
2221, 3syl6eqr 2674 . . 3  |-  ( h  =  H  ->  { f  |  ( f : ran  G --> ran  h  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( f `  x ) h ( f `  y ) )  =  ( f `
 ( x G y ) ) ) }  =  S )
23 df-ghomOLD 33683 . . 3  |- GrpOpHom  =  ( g  e.  GrpOp ,  h  e.  GrpOp  |->  { f  |  ( f : ran  g
--> ran  h  /\  A. x  e.  ran  g A. y  e.  ran  g ( ( f `  x
) h ( f `
 y ) )  =  ( f `  ( x g y ) ) ) } )
2414, 22, 23ovmpt2g 6795 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  S  e.  _V )  ->  ( G GrpOpHom  H )  =  S )
255, 24mpd3an3 1425 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( G GrpOpHom  H )  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343   GrpOpHom cghomOLD 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ghomOLD 33683
This theorem is referenced by:  elghomlem2OLD  33685
  Copyright terms: Public domain W3C validator