MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicore Structured version   Visualization version   Unicode version

Theorem elicore 12226
Description: A member of a left closed, right open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elicore  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )

Proof of Theorem elicore
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 12181 . . . . . . 7  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elixx3g 12188 . . . . . 6  |-  ( C  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
32biimpi 206 . . . . 5  |-  ( C  e.  ( A [,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
43simpld 475 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* ) )
54simp3d 1075 . . 3  |-  ( C  e.  ( A [,) B )  ->  C  e.  RR* )
65adantl 482 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR* )
7 simpl 473 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  A  e.  RR )
83simprd 479 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  <_  C  /\  C  <  B ) )
98simpld 475 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  <_  C )
109adantl 482 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  A  <_  C )
114simp2d 1074 . . . 4  |-  ( C  e.  ( A [,) B )  ->  B  e.  RR* )
1211adantl 482 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  B  e.  RR* )
13 pnfxr 10092 . . . 4  |- +oo  e.  RR*
1413a1i 11 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  -> +oo  e.  RR* )
158simprd 479 . . . 4  |-  ( C  e.  ( A [,) B )  ->  C  <  B )
1615adantl 482 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  <  B )
17 pnfge 11964 . . . . 5  |-  ( B  e.  RR*  ->  B  <_ +oo )
1811, 17syl 17 . . . 4  |-  ( C  e.  ( A [,) B )  ->  B  <_ +oo )
1918adantl 482 . . 3  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  B  <_ +oo )
206, 12, 14, 16, 19xrltletrd 11992 . 2  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  < +oo )
21 xrre3 12002 . 2  |-  ( ( ( C  e.  RR*  /\  A  e.  RR )  /\  ( A  <_  C  /\  C  < +oo ) )  ->  C  e.  RR )
226, 7, 10, 20, 21syl22anc 1327 1  |-  ( ( A  e.  RR  /\  C  e.  ( A [,) B ) )  ->  C  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181
This theorem is referenced by:  relowlpssretop  33212  limsupresico  39932  liminfresico  40003  fourierdlem43  40367
  Copyright terms: Public domain W3C validator