MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem4 Structured version   Visualization version   Unicode version

Theorem isf34lem4 9199
Description: Lemma for isfin3-4 9204. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
isf34lem4  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  U. X )  =  |^| ( F " X ) )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem isf34lem4
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sspwuni 4611 . . . . 5  |-  ( X 
C_  ~P A  <->  U. X  C_  A )
2 compss.a . . . . . 6  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
32isf34lem1 9194 . . . . 5  |-  ( ( A  e.  V  /\  U. X  C_  A )  ->  ( F `  U. X )  =  ( A  \  U. X
) )
41, 3sylan2b 492 . . . 4  |-  ( ( A  e.  V  /\  X  C_  ~P A )  ->  ( F `  U. X )  =  ( A  \  U. X
) )
54adantrr 753 . . 3  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  U. X )  =  ( A  \  U. X
) )
6 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  ( X 
C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  ->  -.  b  e.  U. X )
7 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  ->  b  e.  A
)
87ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  /\  -.  b  e.  a )  ->  b  e.  A )
9 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  /\  -.  b  e.  a )  ->  -.  b  e.  a )
108, 9eldifd 3585 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  /\  -.  b  e.  a )  ->  b  e.  ( A 
\  a ) )
11 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  /\  -.  b  e.  a )  ->  ( A  \  a
)  e.  X )
12 elunii 4441 . . . . . . . . . . . 12  |-  ( ( b  e.  ( A 
\  a )  /\  ( A  \  a
)  e.  X )  ->  b  e.  U. X )
1310, 11, 12syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  /\  -.  b  e.  a )  ->  b  e.  U. X
)
1413ex 450 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  ( X 
C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  ->  ( -.  b  e.  a  ->  b  e.  U. X
) )
156, 14mt3d 140 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  ( X 
C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  ( a  e.  ~P A  /\  ( A  \ 
a )  e.  X
) )  ->  b  e.  a )
1615expr 643 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  ( X 
C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  /\  a  e.  ~P A
)  ->  ( ( A  \  a )  e.  X  ->  b  e.  a ) )
1716ralrimiva 2966 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  A  /\  -.  b  e.  U. X ) )  ->  A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a ) )
1817ex 450 . . . . . 6  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( ( b  e.  A  /\  -.  b  e.  U. X )  ->  A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a ) ) )
19 n0 3931 . . . . . . . . 9  |-  ( X  =/=  (/)  <->  E. c  c  e.  X )
20 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  V  /\  X  C_  ~P A )  ->  X  C_  ~P A )
2120sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  c  e.  ~P A )
2221elpwid 4170 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  c  C_  A )
23 dfss4 3858 . . . . . . . . . . . . . . 15  |-  ( c 
C_  A  <->  ( A  \  ( A  \  c
) )  =  c )
2422, 23sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  ( A  \  ( A  \ 
c ) )  =  c )
25 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  c  e.  X )
2624, 25eqeltrd 2701 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  ( A  \  ( A  \ 
c ) )  e.  X )
27 difss 3737 . . . . . . . . . . . . . . . 16  |-  ( A 
\  c )  C_  A
28 elpw2g 4827 . . . . . . . . . . . . . . . 16  |-  ( A  e.  V  ->  (
( A  \  c
)  e.  ~P A  <->  ( A  \  c ) 
C_  A ) )
2927, 28mpbiri 248 . . . . . . . . . . . . . . 15  |-  ( A  e.  V  ->  ( A  \  c )  e. 
~P A )
3029ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  ( A  \  c )  e. 
~P A )
31 difeq2 3722 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( A  \ 
c )  ->  ( A  \  a )  =  ( A  \  ( A  \  c ) ) )
3231eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( A  \ 
c )  ->  (
( A  \  a
)  e.  X  <->  ( A  \  ( A  \  c
) )  e.  X
) )
33 eleq2 2690 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( A  \ 
c )  ->  (
b  e.  a  <->  b  e.  ( A  \  c
) ) )
3432, 33imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( a  =  ( A  \ 
c )  ->  (
( ( A  \ 
a )  e.  X  ->  b  e.  a )  <-> 
( ( A  \ 
( A  \  c
) )  e.  X  ->  b  e.  ( A 
\  c ) ) ) )
3534rspcv 3305 . . . . . . . . . . . . . 14  |-  ( ( A  \  c )  e.  ~P A  -> 
( A. a  e. 
~P  A ( ( A  \  a )  e.  X  ->  b  e.  a )  ->  (
( A  \  ( A  \  c ) )  e.  X  ->  b  e.  ( A  \  c
) ) ) )
3630, 35syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  ( A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a )  ->  (
( A  \  ( A  \  c ) )  e.  X  ->  b  e.  ( A  \  c
) ) ) )
3726, 36mpid 44 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  ( A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a )  ->  b  e.  ( A  \  c
) ) )
38 eldifi 3732 . . . . . . . . . . . 12  |-  ( b  e.  ( A  \ 
c )  ->  b  e.  A )
3937, 38syl6 35 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  X  C_  ~P A
)  /\  c  e.  X )  ->  ( A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a )  ->  b  e.  A ) )
4039ex 450 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  X  C_  ~P A )  ->  ( c  e.  X  ->  ( A. a  e.  ~P  A
( ( A  \ 
a )  e.  X  ->  b  e.  a )  ->  b  e.  A
) ) )
4140exlimdv 1861 . . . . . . . . 9  |-  ( ( A  e.  V  /\  X  C_  ~P A )  ->  ( E. c 
c  e.  X  -> 
( A. a  e. 
~P  A ( ( A  \  a )  e.  X  ->  b  e.  a )  ->  b  e.  A ) ) )
4219, 41syl5bi 232 . . . . . . . 8  |-  ( ( A  e.  V  /\  X  C_  ~P A )  ->  ( X  =/=  (/)  ->  ( A. a  e.  ~P  A ( ( A  \  a )  e.  X  ->  b  e.  a )  ->  b  e.  A ) ) )
4342impr 649 . . . . . . 7  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( A. a  e.  ~P  A ( ( A  \  a )  e.  X  ->  b  e.  a )  ->  b  e.  A ) )
44 eluni 4439 . . . . . . . . 9  |-  ( b  e.  U. X  <->  E. c
( b  e.  c  /\  c  e.  X
) )
4529ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  c  /\  c  e.  X ) )  -> 
( A  \  c
)  e.  ~P A
)
4626adantlrr 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  c  e.  X
)  ->  ( A  \  ( A  \  c
) )  e.  X
)
4746adantrl 752 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  c  /\  c  e.  X ) )  -> 
( A  \  ( A  \  c ) )  e.  X )
48 elndif 3734 . . . . . . . . . . . . . . . 16  |-  ( b  e.  c  ->  -.  b  e.  ( A  \  c ) )
4948ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  c  /\  c  e.  X ) )  ->  -.  b  e.  ( A  \  c ) )
5047, 49jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  c  /\  c  e.  X ) )  -> 
( ( A  \ 
( A  \  c
) )  e.  X  /\  -.  b  e.  ( A  \  c ) ) )
51 annim 441 . . . . . . . . . . . . . 14  |-  ( ( ( A  \  ( A  \  c ) )  e.  X  /\  -.  b  e.  ( A  \  c ) )  <->  -.  (
( A  \  ( A  \  c ) )  e.  X  ->  b  e.  ( A  \  c
) ) )
5250, 51sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  c  /\  c  e.  X ) )  ->  -.  ( ( A  \ 
( A  \  c
) )  e.  X  ->  b  e.  ( A 
\  c ) ) )
5334notbid 308 . . . . . . . . . . . . . 14  |-  ( a  =  ( A  \ 
c )  ->  ( -.  ( ( A  \ 
a )  e.  X  ->  b  e.  a )  <->  -.  ( ( A  \ 
( A  \  c
) )  e.  X  ->  b  e.  ( A 
\  c ) ) ) )
5453rspcev 3309 . . . . . . . . . . . . 13  |-  ( ( ( A  \  c
)  e.  ~P A  /\  -.  ( ( A 
\  ( A  \ 
c ) )  e.  X  ->  b  e.  ( A  \  c
) ) )  ->  E. a  e.  ~P  A  -.  ( ( A 
\  a )  e.  X  ->  b  e.  a ) )
5545, 52, 54syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  c  /\  c  e.  X ) )  ->  E. a  e.  ~P  A  -.  ( ( A 
\  a )  e.  X  ->  b  e.  a ) )
56 rexnal 2995 . . . . . . . . . . . 12  |-  ( E. a  e.  ~P  A  -.  ( ( A  \ 
a )  e.  X  ->  b  e.  a )  <->  -.  A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a ) )
5755, 56sylib 208 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  /\  ( b  e.  c  /\  c  e.  X ) )  ->  -.  A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a ) )
5857ex 450 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( ( b  e.  c  /\  c  e.  X )  ->  -.  A. a  e.  ~P  A
( ( A  \ 
a )  e.  X  ->  b  e.  a ) ) )
5958exlimdv 1861 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( E. c
( b  e.  c  /\  c  e.  X
)  ->  -.  A. a  e.  ~P  A ( ( A  \  a )  e.  X  ->  b  e.  a ) ) )
6044, 59syl5bi 232 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( b  e. 
U. X  ->  -.  A. a  e.  ~P  A
( ( A  \ 
a )  e.  X  ->  b  e.  a ) ) )
6160con2d 129 . . . . . . 7  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( A. a  e.  ~P  A ( ( A  \  a )  e.  X  ->  b  e.  a )  ->  -.  b  e.  U. X ) )
6243, 61jcad 555 . . . . . 6  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( A. a  e.  ~P  A ( ( A  \  a )  e.  X  ->  b  e.  a )  ->  (
b  e.  A  /\  -.  b  e.  U. X
) ) )
6318, 62impbid 202 . . . . 5  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( ( b  e.  A  /\  -.  b  e.  U. X )  <->  A. a  e.  ~P  A ( ( A 
\  a )  e.  X  ->  b  e.  a ) ) )
64 eldif 3584 . . . . 5  |-  ( b  e.  ( A  \  U. X )  <->  ( b  e.  A  /\  -.  b  e.  U. X ) )
65 vex 3203 . . . . . 6  |-  b  e. 
_V
6665elintrab 4488 . . . . 5  |-  ( b  e.  |^| { a  e. 
~P A  |  ( A  \  a )  e.  X }  <->  A. a  e.  ~P  A ( ( A  \  a )  e.  X  ->  b  e.  a ) )
6763, 64, 663bitr4g 303 . . . 4  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( b  e.  ( A  \  U. X )  <->  b  e.  |^|
{ a  e.  ~P A  |  ( A  \  a )  e.  X } ) )
6867eqrdv 2620 . . 3  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( A  \  U. X )  =  |^| { a  e.  ~P A  |  ( A  \ 
a )  e.  X } )
695, 68eqtrd 2656 . 2  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  U. X )  =  |^| { a  e.  ~P A  |  ( A  \ 
a )  e.  X } )
702compss 9198 . . 3  |-  ( F
" X )  =  { a  e.  ~P A  |  ( A  \  a )  e.  X }
7170inteqi 4479 . 2  |-  |^| ( F " X )  = 
|^| { a  e.  ~P A  |  ( A  \  a )  e.  X }
7269, 71syl6eqr 2674 1  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  U. X )  =  |^| ( F " X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475    |-> cmpt 4729   "cima 5117   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  isf34lem5  9200  isf34lem6  9202
  Copyright terms: Public domain W3C validator