MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plybss Structured version   Visualization version   Unicode version

Theorem plybss 23950
Description: Reverse closure of the parameter  S of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plybss  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )

Proof of Theorem plybss
Dummy variables  k 
a  n  z  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ply 23944 . . . 4  |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) } )
21dmmptss 5631 . . 3  |-  dom Poly  C_  ~P CC
3 elfvdm 6220 . . 3  |-  ( F  e.  (Poly `  S
)  ->  S  e.  dom Poly )
42, 3sseldi 3601 . 2  |-  ( F  e.  (Poly `  S
)  ->  S  e.  ~P CC )
54elpwid 4170 1  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    u. cun 3572    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   0cc0 9936    x. cmul 9941   NN0cn0 11292   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ply 23944
This theorem is referenced by:  elply  23951  plyf  23954  plyssc  23956  plyaddlem  23971  plymullem  23972  plysub  23975  dgrlem  23985  coeidlem  23993  plyco  23997  plycj  24033  plyreres  24038  plydivlem3  24050  plydivlem4  24051  elmnc  37706
  Copyright terms: Public domain W3C validator