Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgrsub2 Structured version   Visualization version   Unicode version

Theorem dgrsub2 37705
Description: Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Hypothesis
Ref Expression
dgrsub2.a  |-  N  =  (deg `  F )
Assertion
Ref Expression
dgrsub2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <  N
)

Proof of Theorem dgrsub2
StepHypRef Expression
1 simpr2 1068 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  N  e.  NN )
2 dgr0 24018 . . . . 5  |-  (deg ` 
0p )  =  0
3 nngt0 11049 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
42, 3syl5eqbr 4688 . . . 4  |-  ( N  e.  NN  ->  (deg `  0p )  < 
N )
5 fveq2 6191 . . . . 5  |-  ( ( F  oF  -  G )  =  0p  ->  (deg `  ( F  oF  -  G
) )  =  (deg
`  0p ) )
65breq1d 4663 . . . 4  |-  ( ( F  oF  -  G )  =  0p  ->  ( (deg `  ( F  oF  -  G ) )  <  N  <->  (deg `  0p )  <  N
) )
74, 6syl5ibrcom 237 . . 3  |-  ( N  e.  NN  ->  (
( F  oF  -  G )  =  0p  ->  (deg `  ( F  oF  -  G ) )  <  N ) )
81, 7syl 17 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( F  oF  -  G )  =  0p  -> 
(deg `  ( F  oF  -  G
) )  <  N
) )
9 plyssc 23956 . . . . . . . 8  |-  (Poly `  S )  C_  (Poly `  CC )
109sseli 3599 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
11 plyssc 23956 . . . . . . . 8  |-  (Poly `  T )  C_  (Poly `  CC )
1211sseli 3599 . . . . . . 7  |-  ( G  e.  (Poly `  T
)  ->  G  e.  (Poly `  CC ) )
13 eqid 2622 . . . . . . . 8  |-  (deg `  F )  =  (deg
`  F )
14 eqid 2622 . . . . . . . 8  |-  (deg `  G )  =  (deg
`  G )
1513, 14dgrsub 24028 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  (deg `  ( F  oF  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
1610, 12, 15syl2an 494 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  (deg `  ( F  oF  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
1716adantr 481 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <_  if ( (deg `  F )  <_  (deg `  G ) ,  (deg `  G ) ,  (deg `  F )
) )
18 simpr1 1067 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  G )  =  N )
19 dgrsub2.a . . . . . . . . 9  |-  N  =  (deg `  F )
2019eqcomi 2631 . . . . . . . 8  |-  (deg `  F )  =  N
2120a1i 11 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  F )  =  N )
2218, 21ifeq12d 4106 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  if ( (deg `  F
)  <_  (deg `  G
) ,  (deg `  G ) ,  (deg
`  F ) )  =  if ( (deg
`  F )  <_ 
(deg `  G ) ,  N ,  N ) )
23 ifid 4125 . . . . . 6  |-  if ( (deg `  F )  <_  (deg `  G ) ,  N ,  N )  =  N
2422, 23syl6eq 2672 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  if ( (deg `  F
)  <_  (deg `  G
) ,  (deg `  G ) ,  (deg
`  F ) )  =  N )
2517, 24breqtrd 4679 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <_  N
)
26 eqid 2622 . . . . . . . . 9  |-  (coeff `  F )  =  (coeff `  F )
27 eqid 2622 . . . . . . . . 9  |-  (coeff `  G )  =  (coeff `  G )
2826, 27coesub 24013 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  (coeff `  ( F  oF  -  G
) )  =  ( (coeff `  F )  oF  -  (coeff `  G ) ) )
2910, 12, 28syl2an 494 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  (coeff `  ( F  oF  -  G
) )  =  ( (coeff `  F )  oF  -  (coeff `  G ) ) )
3029adantr 481 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  ( F  oF  -  G
) )  =  ( (coeff `  F )  oF  -  (coeff `  G ) ) )
3130fveq1d 6193 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  ( F  oF  -  G
) ) `  N
)  =  ( ( (coeff `  F )  oF  -  (coeff `  G ) ) `  N ) )
321nnnn0d 11351 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  N  e.  NN0 )
3326coef3 23988 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
3433ad2antrr 762 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  F ) : NN0 --> CC )
35 ffn 6045 . . . . . . . 8  |-  ( (coeff `  F ) : NN0 --> CC 
->  (coeff `  F )  Fn  NN0 )
3634, 35syl 17 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  F )  Fn  NN0 )
3727coef3 23988 . . . . . . . . 9  |-  ( G  e.  (Poly `  T
)  ->  (coeff `  G
) : NN0 --> CC )
3837ad2antlr 763 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  G ) : NN0 --> CC )
39 ffn 6045 . . . . . . . 8  |-  ( (coeff `  G ) : NN0 --> CC 
->  (coeff `  G )  Fn  NN0 )
4038, 39syl 17 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(coeff `  G )  Fn  NN0 )
41 nn0ex 11298 . . . . . . . 8  |-  NN0  e.  _V
4241a1i 11 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  ->  NN0  e.  _V )
43 inidm 3822 . . . . . . 7  |-  ( NN0 
i^i  NN0 )  =  NN0
44 simplr3 1105 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) )
45 eqidd 2623 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( (coeff `  G
) `  N )  =  ( (coeff `  G ) `  N
) )
4636, 40, 42, 42, 43, 44, 45ofval 6906 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T ) )  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F ) `  N
)  =  ( (coeff `  G ) `  N
) ) )  /\  N  e.  NN0 )  -> 
( ( (coeff `  F )  oF  -  (coeff `  G
) ) `  N
)  =  ( ( (coeff `  G ) `  N )  -  (
(coeff `  G ) `  N ) ) )
4732, 46mpdan 702 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( (coeff `  F )  oF  -  (coeff `  G
) ) `  N
)  =  ( ( (coeff `  G ) `  N )  -  (
(coeff `  G ) `  N ) ) )
4838, 32ffvelrnd 6360 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  G
) `  N )  e.  CC )
4948subidd 10380 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( (coeff `  G ) `  N
)  -  ( (coeff `  G ) `  N
) )  =  0 )
5031, 47, 493eqtrd 2660 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( (coeff `  ( F  oF  -  G
) ) `  N
)  =  0 )
51 plysubcl 23978 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )
)  ->  ( F  oF  -  G
)  e.  (Poly `  CC ) )
5210, 12, 51syl2an 494 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  ->  ( F  oF  -  G
)  e.  (Poly `  CC ) )
5352adantr 481 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( F  oF  -  G )  e.  (Poly `  CC )
)
54 eqid 2622 . . . . . 6  |-  (deg `  ( F  oF  -  G ) )  =  (deg `  ( F  oF  -  G
) )
55 eqid 2622 . . . . . 6  |-  (coeff `  ( F  oF  -  G ) )  =  (coeff `  ( F  oF  -  G
) )
5654, 55dgrlt 24022 . . . . 5  |-  ( ( ( F  oF  -  G )  e.  (Poly `  CC )  /\  N  e.  NN0 )  ->  ( ( ( F  oF  -  G )  =  0p  \/  (deg `  ( F  oF  -  G ) )  < 
N )  <->  ( (deg `  ( F  oF  -  G ) )  <_  N  /\  (
(coeff `  ( F  oF  -  G
) ) `  N
)  =  0 ) ) )
5753, 32, 56syl2anc 693 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( ( F  oF  -  G
)  =  0p  \/  (deg `  ( F  oF  -  G
) )  <  N
)  <->  ( (deg `  ( F  oF  -  G ) )  <_  N  /\  ( (coeff `  ( F  oF  -  G ) ) `  N )  =  0 ) ) )
5825, 50, 57mpbir2and 957 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( ( F  oF  -  G )  =  0p  \/  (deg `  ( F  oF  -  G
) )  <  N
) )
5958ord 392 . 2  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
( -.  ( F  oF  -  G
)  =  0p  ->  (deg `  ( F  oF  -  G
) )  <  N
) )
608, 59pm2.61d 170 1  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  T )
)  /\  ( (deg `  G )  =  N  /\  N  e.  NN  /\  ( (coeff `  F
) `  N )  =  ( (coeff `  G ) `  N
) ) )  -> 
(deg `  ( F  oF  -  G
) )  <  N
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   class class class wbr 4653    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   0cc0 9936    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  mpaaeu  37720
  Copyright terms: Public domain W3C validator