| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eloprabi | Structured version Visualization version Unicode version | ||
| Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| eloprabi.1 |
|
| eloprabi.2 |
|
| eloprabi.3 |
|
| Ref | Expression |
|---|---|
| eloprabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2626 |
. . . . . 6
| |
| 2 | 1 | anbi1d 741 |
. . . . 5
|
| 3 | 2 | 3exbidv 1853 |
. . . 4
|
| 4 | df-oprab 6654 |
. . . 4
| |
| 5 | 3, 4 | elab2g 3353 |
. . 3
|
| 6 | 5 | ibi 256 |
. 2
|
| 7 | opex 4932 |
. . . . . . . . . . 11
| |
| 8 | vex 3203 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | op1std 7178 |
. . . . . . . . . 10
|
| 10 | 9 | fveq2d 6195 |
. . . . . . . . 9
|
| 11 | vex 3203 |
. . . . . . . . . 10
| |
| 12 | vex 3203 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | op1st 7176 |
. . . . . . . . 9
|
| 14 | 10, 13 | syl6req 2673 |
. . . . . . . 8
|
| 15 | eloprabi.1 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
|
| 17 | 9 | fveq2d 6195 |
. . . . . . . . 9
|
| 18 | 11, 12 | op2nd 7177 |
. . . . . . . . 9
|
| 19 | 17, 18 | syl6req 2673 |
. . . . . . . 8
|
| 20 | eloprabi.2 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
|
| 22 | 7, 8 | op2ndd 7179 |
. . . . . . . . 9
|
| 23 | 22 | eqcomd 2628 |
. . . . . . . 8
|
| 24 | eloprabi.3 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
|
| 26 | 16, 21, 25 | 3bitrd 294 |
. . . . . 6
|
| 27 | 26 | biimpa 501 |
. . . . 5
|
| 28 | 27 | exlimiv 1858 |
. . . 4
|
| 29 | 28 | exlimiv 1858 |
. . 3
|
| 30 | 29 | exlimiv 1858 |
. 2
|
| 31 | 6, 30 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-oprab 6654 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |