MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpt2rab Structured version   Visualization version   Unicode version

Theorem elovmpt2rab 6880
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elovmpt2rab.o  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  M  |  ph } )
elovmpt2rab.v  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  M  e.  _V )
Assertion
Ref Expression
elovmpt2rab  |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M ) )
Distinct variable groups:    x, M, y, z    x, X, y, z    x, Y, y, z    z, Z
Allowed substitution hints:    ph( x, y, z)    O( x, y, z)    Z( x, y)

Proof of Theorem elovmpt2rab
StepHypRef Expression
1 elovmpt2rab.o . . 3  |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  M  |  ph } )
21elmpt2cl 6876 . 2  |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
31a1i 11 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  M  |  ph } ) )
4 sbceq1a 3446 . . . . . . . 8  |-  ( y  =  Y  ->  ( ph 
<-> 
[. Y  /  y ]. ph ) )
5 sbceq1a 3446 . . . . . . . 8  |-  ( x  =  X  ->  ( [. Y  /  y ]. ph  <->  [. X  /  x ]. [. Y  /  y ]. ph ) )
64, 5sylan9bbr 737 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  [. X  /  x ]. [. Y  / 
y ]. ph ) )
76adantl 482 . . . . . 6  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  ( x  =  X  /\  y  =  Y ) )  ->  ( ph 
<-> 
[. X  /  x ]. [. Y  /  y ]. ph ) )
87rabbidv 3189 . . . . 5  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  ( x  =  X  /\  y  =  Y ) )  ->  { z  e.  M  |  ph }  =  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
)
9 eqidd 2623 . . . . 5  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  x  =  X
)  ->  _V  =  _V )
10 simpl 473 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  X  e.  _V )
11 simpr 477 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  Y  e.  _V )
12 elovmpt2rab.v . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  M  e.  _V )
13 rabexg 4812 . . . . . 6  |-  ( M  e.  _V  ->  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V )
1412, 13syl 17 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  e.  _V )
15 nfcv 2764 . . . . . . 7  |-  F/_ x X
1615nfel1 2779 . . . . . 6  |-  F/ x  X  e.  _V
17 nfcv 2764 . . . . . . 7  |-  F/_ x Y
1817nfel1 2779 . . . . . 6  |-  F/ x  Y  e.  _V
1916, 18nfan 1828 . . . . 5  |-  F/ x
( X  e.  _V  /\  Y  e.  _V )
20 nfcv 2764 . . . . . . 7  |-  F/_ y X
2120nfel1 2779 . . . . . 6  |-  F/ y  X  e.  _V
22 nfcv 2764 . . . . . . 7  |-  F/_ y Y
2322nfel1 2779 . . . . . 6  |-  F/ y  Y  e.  _V
2421, 23nfan 1828 . . . . 5  |-  F/ y ( X  e.  _V  /\  Y  e.  _V )
25 nfsbc1v 3455 . . . . . 6  |-  F/ x [. X  /  x ]. [. Y  /  y ]. ph
26 nfcv 2764 . . . . . 6  |-  F/_ x M
2725, 26nfrab 3123 . . . . 5  |-  F/_ x { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
28 nfsbc1v 3455 . . . . . . 7  |-  F/ y
[. Y  /  y ]. ph
2920, 28nfsbc 3457 . . . . . 6  |-  F/ y
[. X  /  x ]. [. Y  /  y ]. ph
30 nfcv 2764 . . . . . 6  |-  F/_ y M
3129, 30nfrab 3123 . . . . 5  |-  F/_ y { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
323, 8, 9, 10, 11, 14, 19, 24, 20, 17, 27, 31ovmpt2dxf 6786 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X O Y )  =  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
)
3332eleq2d 2687 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  ( X O Y )  <-> 
Z  e.  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }
) )
34 df-3an 1039 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M )  <->  ( ( X  e.  _V  /\  Y  e.  _V )  /\  Z  e.  M ) )
3534simplbi2com 657 . . . 4  |-  ( Z  e.  M  ->  (
( X  e.  _V  /\  Y  e.  _V )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M )
) )
36 elrabi 3359 . . . 4  |-  ( Z  e.  { z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  ->  Z  e.  M )
3735, 36syl11 33 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  {
z  e.  M  |  [. X  /  x ]. [. Y  /  y ]. ph }  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M ) ) )
3833, 37sylbid 230 . 2  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  ( X O Y )  ->  ( X  e. 
_V  /\  Y  e.  _V  /\  Z  e.  M
) ) )
392, 38mpcom 38 1  |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [.wsbc 3435  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator