MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpt2 Structured version   Visualization version   Unicode version

Theorem elovmpt2 6879
Description: Utility lemma for two-parameter classes.

EDITORIAL: can simplify isghm 17660, islmhm 19027. (Contributed by Stefan O'Rear, 21-Jan-2015.)

Hypotheses
Ref Expression
elovmpt2.d  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpt2.c  |-  C  e. 
_V
elovmpt2.e  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
Assertion
Ref Expression
elovmpt2  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Distinct variable groups:    A, a,
b    B, a, b    E, a, b    F, a, b    X, a, b    Y, a, b
Allowed substitution hints:    C( a, b)    D( a, b)

Proof of Theorem elovmpt2
StepHypRef Expression
1 elovmpt2.d . . . 4  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
21elmpt2cl 6876 . . 3  |-  ( F  e.  ( X D Y )  ->  ( X  e.  A  /\  Y  e.  B )
)
3 elovmpt2.c . . . . . . 7  |-  C  e. 
_V
43gen2 1723 . . . . . 6  |-  A. a A. b  C  e.  _V
5 elovmpt2.e . . . . . . . 8  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
65eleq1d 2686 . . . . . . 7  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( C  e.  _V  <->  E  e.  _V ) )
76spc2gv 3296 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( A. a A. b  C  e.  _V  ->  E  e.  _V )
)
84, 7mpi 20 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  E  e.  _V )
95, 1ovmpt2ga 6790 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B  /\  E  e.  _V )  ->  ( X D Y )  =  E )
108, 9mpd3an3 1425 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X D Y )  =  E )
1110eleq2d 2687 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( F  e.  ( X D Y )  <-> 
F  e.  E ) )
122, 11biadan2 674 . 2  |-  ( F  e.  ( X D Y )  <->  ( ( X  e.  A  /\  Y  e.  B )  /\  F  e.  E
) )
13 df-3an 1039 . 2  |-  ( ( X  e.  A  /\  Y  e.  B  /\  F  e.  E )  <->  ( ( X  e.  A  /\  Y  e.  B
)  /\  F  e.  E ) )
1412, 13bitr4i 267 1  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  isgim  17704  oppglsm  18057  islmim  19062
  Copyright terms: Public domain W3C validator