Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddatriN Structured version   Visualization version   Unicode version

Theorem elpaddatriN 35089
Description: Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddfval.l  |-  .<_  =  ( le `  K )
paddfval.j  |-  .\/  =  ( join `  K )
paddfval.a  |-  A  =  ( Atoms `  K )
paddfval.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
elpaddatriN  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  S  e.  ( X  .+  { Q } ) )

Proof of Theorem elpaddatriN
StepHypRef Expression
1 simpl1 1064 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  K  e.  Lat )
2 simpl2 1065 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  X  C_  A
)
3 simpl3 1066 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  Q  e.  A )
43snssd 4340 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  { Q }  C_  A )
5 simpr1 1067 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  R  e.  X )
6 snidg 4206 . . 3  |-  ( Q  e.  A  ->  Q  e.  { Q } )
73, 6syl 17 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  Q  e.  { Q } )
8 simpr2 1068 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  S  e.  A )
9 simpr3 1069 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  S  .<_  ( R  .\/  Q ) )
10 paddfval.l . . 3  |-  .<_  =  ( le `  K )
11 paddfval.j . . 3  |-  .\/  =  ( join `  K )
12 paddfval.a . . 3  |-  A  =  ( Atoms `  K )
13 paddfval.p . . 3  |-  .+  =  ( +P `  K
)
1410, 11, 12, 13elpaddri 35088 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  { Q }  C_  A
)  /\  ( R  e.  X  /\  Q  e. 
{ Q } )  /\  ( S  e.  A  /\  S  .<_  ( R  .\/  Q ) ) )  ->  S  e.  ( X  .+  { Q } ) )
151, 2, 4, 5, 7, 8, 9, 14syl322anc 1354 1  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R 
.\/  Q ) ) )  ->  S  e.  ( X  .+  { Q } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lub 16974  df-join 16976  df-lat 17046  df-ats 34554  df-padd 35082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator