MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Structured version   Visualization version   Unicode version

Theorem elptr 21376
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
elptr  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  X_ y  e.  A  ( G `  y )  e.  B
)
Distinct variable groups:    x, g,
y, G    z, g, A, x, y    g, F, x, y, z    g, V, x, y, z    y, W
Allowed substitution hints:    B( x, y, z, g)    G( z)    W( x, z, g)

Proof of Theorem elptr
Dummy variables  h  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1087 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  G  Fn  A )
2 simp1 1061 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  A  e.  V )
3 fnex 6481 . . . 4  |-  ( ( G  Fn  A  /\  A  e.  V )  ->  G  e.  _V )
41, 2, 3syl2anc 693 . . 3  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  G  e.  _V )
5 simp2r 1088 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )
6 difeq2 3722 . . . . . . 7  |-  ( w  =  W  ->  ( A  \  w )  =  ( A  \  W
) )
76raleqdv 3144 . . . . . 6  |-  ( w  =  W  ->  ( A. y  e.  ( A  \  w ) ( G `  y )  =  U. ( F `
 y )  <->  A. y  e.  ( A  \  W
) ( G `  y )  =  U. ( F `  y ) ) )
87rspcev 3309 . . . . 5  |-  ( ( W  e.  Fin  /\  A. y  e.  ( A 
\  W ) ( G `  y )  =  U. ( F `
 y ) )  ->  E. w  e.  Fin  A. y  e.  ( A 
\  w ) ( G `  y )  =  U. ( F `
 y ) )
983ad2ant3 1084 . . . 4  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) )
101, 5, 93jca 1242 . . 3  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) ) )
11 fveq1 6190 . . . . . . . 8  |-  ( h  =  G  ->  (
h `  y )  =  ( G `  y ) )
1211eqcomd 2628 . . . . . . 7  |-  ( h  =  G  ->  ( G `  y )  =  ( h `  y ) )
1312ixpeq2dv 7924 . . . . . 6  |-  ( h  =  G  ->  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
)
1413biantrud 528 . . . . 5  |-  ( h  =  G  ->  (
( h  Fn  A  /\  A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w ) ( h `
 y )  = 
U. ( F `  y ) )  <->  ( (
h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) ) )
15 fneq1 5979 . . . . . 6  |-  ( h  =  G  ->  (
h  Fn  A  <->  G  Fn  A ) )
1611eleq1d 2686 . . . . . . 7  |-  ( h  =  G  ->  (
( h `  y
)  e.  ( F `
 y )  <->  ( G `  y )  e.  ( F `  y ) ) )
1716ralbidv 2986 . . . . . 6  |-  ( h  =  G  ->  ( A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  <->  A. y  e.  A  ( G `  y )  e.  ( F `  y ) ) )
1811eqeq1d 2624 . . . . . . 7  |-  ( h  =  G  ->  (
( h `  y
)  =  U. ( F `  y )  <->  ( G `  y )  =  U. ( F `
 y ) ) )
1918rexralbidv 3058 . . . . . 6  |-  ( h  =  G  ->  ( E. w  e.  Fin  A. y  e.  ( A 
\  w ) ( h `  y )  =  U. ( F `
 y )  <->  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) ) )
2015, 17, 193anbi123d 1399 . . . . 5  |-  ( h  =  G  ->  (
( h  Fn  A  /\  A. y  e.  A  ( h `  y
)  e.  ( F `
 y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w ) ( h `
 y )  = 
U. ( F `  y ) )  <->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( G `  y
)  =  U. ( F `  y )
) ) )
2114, 20bitr3d 270 . . . 4  |-  ( h  =  G  ->  (
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
)  <->  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( G `  y
)  =  U. ( F `  y )
) ) )
2221spcegv 3294 . . 3  |-  ( G  e.  _V  ->  (
( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( G `  y )  =  U. ( F `  y ) )  ->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) ) )
234, 10, 22sylc 65 . 2  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  E. h
( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e. 
Fin  A. y  e.  ( A  \  w ) ( h `  y
)  =  U. ( F `  y )
)  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) )
24 ptbas.1 . . 3  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
2524elpt 21375 . 2  |-  ( X_ y  e.  A  ( G `  y )  e.  B  <->  E. h ( ( h  Fn  A  /\  A. y  e.  A  ( h `  y )  e.  ( F `  y )  /\  E. w  e.  Fin  A. y  e.  ( A  \  w
) ( h `  y )  =  U. ( F `  y ) )  /\  X_ y  e.  A  ( G `  y )  =  X_ y  e.  A  (
h `  y )
) )
2623, 25sylibr 224 1  |-  ( ( A  e.  V  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  e.  ( F `  y ) )  /\  ( W  e.  Fin  /\ 
A. y  e.  ( A  \  W ) ( G `  y
)  =  U. ( F `  y )
) )  ->  X_ y  e.  A  ( G `  y )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571   U.cuni 4436    Fn wfn 5883   ` cfv 5888   X_cixp 7908   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ixp 7909
This theorem is referenced by:  elptr2  21377
  Copyright terms: Public domain W3C validator