| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elptr | Structured version Visualization version Unicode version | ||
| Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptbas.1 |
|
| Ref | Expression |
|---|---|
| elptr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1087 |
. . . 4
| |
| 2 | simp1 1061 |
. . . 4
| |
| 3 | fnex 6481 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . 3
|
| 5 | simp2r 1088 |
. . . 4
| |
| 6 | difeq2 3722 |
. . . . . . 7
| |
| 7 | 6 | raleqdv 3144 |
. . . . . 6
|
| 8 | 7 | rspcev 3309 |
. . . . 5
|
| 9 | 8 | 3ad2ant3 1084 |
. . . 4
|
| 10 | 1, 5, 9 | 3jca 1242 |
. . 3
|
| 11 | fveq1 6190 |
. . . . . . . 8
| |
| 12 | 11 | eqcomd 2628 |
. . . . . . 7
|
| 13 | 12 | ixpeq2dv 7924 |
. . . . . 6
|
| 14 | 13 | biantrud 528 |
. . . . 5
|
| 15 | fneq1 5979 |
. . . . . 6
| |
| 16 | 11 | eleq1d 2686 |
. . . . . . 7
|
| 17 | 16 | ralbidv 2986 |
. . . . . 6
|
| 18 | 11 | eqeq1d 2624 |
. . . . . . 7
|
| 19 | 18 | rexralbidv 3058 |
. . . . . 6
|
| 20 | 15, 17, 19 | 3anbi123d 1399 |
. . . . 5
|
| 21 | 14, 20 | bitr3d 270 |
. . . 4
|
| 22 | 21 | spcegv 3294 |
. . 3
|
| 23 | 4, 10, 22 | sylc 65 |
. 2
|
| 24 | ptbas.1 |
. . 3
| |
| 25 | 24 | elpt 21375 |
. 2
|
| 26 | 23, 25 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ixp 7909 |
| This theorem is referenced by: elptr2 21377 |
| Copyright terms: Public domain | W3C validator |