MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1 Structured version   Visualization version   Unicode version

Theorem elrnmpt1 5374
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmpt1  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  ran  F
)

Proof of Theorem elrnmpt1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4  |-  x  e. 
_V
2 id 22 . . . . . . 7  |-  ( x  =  z  ->  x  =  z )
3 csbeq1a 3542 . . . . . . 7  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
42, 3eleq12d 2695 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  [_ z  /  x ]_ A ) )
5 csbeq1a 3542 . . . . . . 7  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
65biantrud 528 . . . . . 6  |-  ( x  =  z  ->  (
z  e.  [_ z  /  x ]_ A  <->  ( z  e.  [_ z  /  x ]_ A  /\  B  = 
[_ z  /  x ]_ B ) ) )
74, 6bitr2d 269 . . . . 5  |-  ( x  =  z  ->  (
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B )  <-> 
x  e.  A ) )
87equcoms 1947 . . . 4  |-  ( z  =  x  ->  (
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B )  <-> 
x  e.  A ) )
91, 8spcev 3300 . . 3  |-  ( x  e.  A  ->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) )
10 df-rex 2918 . . . . . 6  |-  ( E. x  e.  A  y  =  B  <->  E. x
( x  e.  A  /\  y  =  B
) )
11 nfv 1843 . . . . . . 7  |-  F/ z ( x  e.  A  /\  y  =  B
)
12 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ A
1312nfcri 2758 . . . . . . . 8  |-  F/ x  z  e.  [_ z  /  x ]_ A
14 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ B
1514nfeq2 2780 . . . . . . . 8  |-  F/ x  y  =  [_ z  /  x ]_ B
1613, 15nfan 1828 . . . . . . 7  |-  F/ x
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B )
175eqeq2d 2632 . . . . . . . 8  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
184, 17anbi12d 747 . . . . . . 7  |-  ( x  =  z  ->  (
( x  e.  A  /\  y  =  B
)  <->  ( z  e. 
[_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B ) ) )
1911, 16, 18cbvex 2272 . . . . . 6  |-  ( E. x ( x  e.  A  /\  y  =  B )  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B ) )
2010, 19bitri 264 . . . . 5  |-  ( E. x  e.  A  y  =  B  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B ) )
21 eqeq1 2626 . . . . . . 7  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
2221anbi2d 740 . . . . . 6  |-  ( y  =  B  ->  (
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B )  <-> 
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
2322exbidv 1850 . . . . 5  |-  ( y  =  B  ->  ( E. z ( z  e. 
[_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B )  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
2420, 23syl5bb 272 . . . 4  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  B  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
25 rnmpt.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
2625rnmpt 5371 . . . 4  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
2724, 26elab2g 3353 . . 3  |-  ( B  e.  V  ->  ( B  e.  ran  F  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
289, 27syl5ibr 236 . 2  |-  ( B  e.  V  ->  (
x  e.  A  ->  B  e.  ran  F ) )
2928impcom 446 1  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  ran  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   [_csb 3533    |-> cmpt 4729   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  fliftel1  6560  minveclem4  23203  minvecolem4  27736  rexunirn  29331  esum2d  30155  totbndbnd  33588  rrnequiv  33634  suprnmpt  39355  disjf1o  39378  disjinfi  39380  choicefi  39392  elrnmpt1d  39435  rnmptbd2lem  39463  suprubrnmpt  39468  rnmptbdlem  39470  supxrleubrnmpt  39632  suprleubrnmpt  39649  infrnmptle  39650  infxrunb3rnmpt  39655  supminfrnmpt  39672  infxrgelbrnmpt  39683  fourierdlem31  40355  ioorrnopnlem  40524  sge0f1o  40599  sge0supre  40606  sge0gerp  40612  sge0iunmpt  40635  sge0rernmpt  40639  sge0reuz  40664  meadjiunlem  40682  iunhoiioolem  40889  vonioolem1  40894  smfpimcclem  41013
  Copyright terms: Public domain W3C validator