![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version Unicode version |
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
elrnmpti.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elrnmpti |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpti.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | rgenw 2924 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | rnmpt.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | elrnmptg 5375 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-cnv 5122 df-dm 5124 df-rn 5125 |
This theorem is referenced by: fliftel 6559 oarec 7642 unfilem1 8224 pwfilem 8260 elrest 16088 psgneldm2 17924 psgnfitr 17937 iscyggen2 18283 iscyg3 18288 cycsubgcyg 18302 eldprd 18403 leordtval2 21016 iocpnfordt 21019 icomnfordt 21020 lecldbas 21023 tsmsxplem1 21956 minveclem2 23197 lhop2 23778 taylthlem2 24128 fsumvma 24938 dchrptlem2 24990 2sqlem1 25142 dchrisum0fno1 25200 minvecolem2 27731 gsumesum 30121 esumlub 30122 esumcst 30125 esumpcvgval 30140 esumgect 30152 esum2d 30155 sigapildsys 30225 sxbrsigalem2 30348 omssubaddlem 30361 omssubadd 30362 eulerpartgbij 30434 actfunsnf1o 30682 actfunsnrndisj 30683 reprsuc 30693 breprexplema 30708 bnj1366 30900 msubco 31428 msubvrs 31457 fin2so 33396 poimirlem17 33426 poimirlem20 33429 cntotbnd 33595 islsat 34278 |
Copyright terms: Public domain | W3C validator |