| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enerOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of ener 8002 as of 1-May-2021. Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enerOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 7960 |
. . . 4
| |
| 2 | 1 | a1i 11 |
. . 3
|
| 3 | bren 7964 |
. . . . 5
| |
| 4 | f1ocnv 6149 |
. . . . . . 7
| |
| 5 | vex 3203 |
. . . . . . . 8
| |
| 6 | vex 3203 |
. . . . . . . 8
| |
| 7 | f1oen2g 7972 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | mp3an12 1414 |
. . . . . . 7
|
| 9 | 4, 8 | syl 17 |
. . . . . 6
|
| 10 | 9 | exlimiv 1858 |
. . . . 5
|
| 11 | 3, 10 | sylbi 207 |
. . . 4
|
| 12 | 11 | adantl 482 |
. . 3
|
| 13 | bren 7964 |
. . . . 5
| |
| 14 | bren 7964 |
. . . . 5
| |
| 15 | eeanv 2182 |
. . . . . 6
| |
| 16 | f1oco 6159 |
. . . . . . . . 9
| |
| 17 | 16 | ancoms 469 |
. . . . . . . 8
|
| 18 | vex 3203 |
. . . . . . . . 9
| |
| 19 | f1oen2g 7972 |
. . . . . . . . 9
| |
| 20 | 6, 18, 19 | mp3an12 1414 |
. . . . . . . 8
|
| 21 | 17, 20 | syl 17 |
. . . . . . 7
|
| 22 | 21 | exlimivv 1860 |
. . . . . 6
|
| 23 | 15, 22 | sylbir 225 |
. . . . 5
|
| 24 | 13, 14, 23 | syl2anb 496 |
. . . 4
|
| 25 | 24 | adantl 482 |
. . 3
|
| 26 | 6 | enref 7988 |
. . . . 5
|
| 27 | 6, 26 | 2th 254 |
. . . 4
|
| 28 | 27 | a1i 11 |
. . 3
|
| 29 | 2, 12, 25, 28 | iserd 7768 |
. 2
|
| 30 | 29 | trud 1493 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-er 7742 df-en 7956 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |