MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enerOLD Structured version   Visualization version   Unicode version

Theorem enerOLD 8003
Description: Obsolete proof of ener 8002 as of 1-May-2021. Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
enerOLD  |-  ~~  Er  _V

Proof of Theorem enerOLD
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 7960 . . . 4  |-  Rel  ~~
21a1i 11 . . 3  |-  ( T. 
->  Rel  ~~  )
3 bren 7964 . . . . 5  |-  ( x 
~~  y  <->  E. f 
f : x -1-1-onto-> y )
4 f1ocnv 6149 . . . . . . 7  |-  ( f : x -1-1-onto-> y  ->  `' f : y -1-1-onto-> x )
5 vex 3203 . . . . . . . 8  |-  y  e. 
_V
6 vex 3203 . . . . . . . 8  |-  x  e. 
_V
7 f1oen2g 7972 . . . . . . . 8  |-  ( ( y  e.  _V  /\  x  e.  _V  /\  `' f : y -1-1-onto-> x )  ->  y  ~~  x )
85, 6, 7mp3an12 1414 . . . . . . 7  |-  ( `' f : y -1-1-onto-> x  -> 
y  ~~  x )
94, 8syl 17 . . . . . 6  |-  ( f : x -1-1-onto-> y  ->  y  ~~  x )
109exlimiv 1858 . . . . 5  |-  ( E. f  f : x -1-1-onto-> y  ->  y  ~~  x
)
113, 10sylbi 207 . . . 4  |-  ( x 
~~  y  ->  y  ~~  x )
1211adantl 482 . . 3  |-  ( ( T.  /\  x  ~~  y )  ->  y  ~~  x )
13 bren 7964 . . . . 5  |-  ( x 
~~  y  <->  E. g 
g : x -1-1-onto-> y )
14 bren 7964 . . . . 5  |-  ( y 
~~  z  <->  E. f 
f : y -1-1-onto-> z )
15 eeanv 2182 . . . . . 6  |-  ( E. g E. f ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  <->  ( E. g  g : x -1-1-onto-> y  /\  E. f  f : y -1-1-onto-> z ) )
16 f1oco 6159 . . . . . . . . 9  |-  ( ( f : y -1-1-onto-> z  /\  g : x -1-1-onto-> y )  ->  (
f  o.  g ) : x -1-1-onto-> z )
1716ancoms 469 . . . . . . . 8  |-  ( ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  (
f  o.  g ) : x -1-1-onto-> z )
18 vex 3203 . . . . . . . . 9  |-  z  e. 
_V
19 f1oen2g 7972 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  z  e.  _V  /\  (
f  o.  g ) : x -1-1-onto-> z )  ->  x  ~~  z )
206, 18, 19mp3an12 1414 . . . . . . . 8  |-  ( ( f  o.  g ) : x -1-1-onto-> z  ->  x  ~~  z )
2117, 20syl 17 . . . . . . 7  |-  ( ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  x  ~~  z )
2221exlimivv 1860 . . . . . 6  |-  ( E. g E. f ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  x  ~~  z )
2315, 22sylbir 225 . . . . 5  |-  ( ( E. g  g : x -1-1-onto-> y  /\  E. f 
f : y -1-1-onto-> z )  ->  x  ~~  z
)
2413, 14, 23syl2anb 496 . . . 4  |-  ( ( x  ~~  y  /\  y  ~~  z )  ->  x  ~~  z )
2524adantl 482 . . 3  |-  ( ( T.  /\  ( x 
~~  y  /\  y  ~~  z ) )  ->  x  ~~  z )
266enref 7988 . . . . 5  |-  x  ~~  x
276, 262th 254 . . . 4  |-  ( x  e.  _V  <->  x  ~~  x )
2827a1i 11 . . 3  |-  ( T. 
->  ( x  e.  _V  <->  x 
~~  x ) )
292, 12, 25, 28iserd 7768 . 2  |-  ( T. 
->  ~~  Er  _V )
3029trud 1493 1  |-  ~~  Er  _V
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   T. wtru 1484   E.wex 1704    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   `'ccnv 5113    o. ccom 5118   Rel wrel 5119   -1-1-onto->wf1o 5887    Er wer 7739    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator