| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsup | Structured version Visualization version Unicode version | ||
| Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| Ref | Expression |
|---|---|
| supmo.1 |
|
| Ref | Expression |
|---|---|
| eqsup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 |
. . . . 5
| |
| 2 | 1 | adantr 481 |
. . . 4
|
| 3 | 2 | supval2 8361 |
. . 3
|
| 4 | 3simpc 1060 |
. . . . 5
| |
| 5 | 4 | adantl 482 |
. . . 4
|
| 6 | simpr1 1067 |
. . . . 5
| |
| 7 | breq1 4656 |
. . . . . . . . . . 11
| |
| 8 | 7 | notbid 308 |
. . . . . . . . . 10
|
| 9 | 8 | ralbidv 2986 |
. . . . . . . . 9
|
| 10 | breq2 4657 |
. . . . . . . . . . 11
| |
| 11 | 10 | imbi1d 331 |
. . . . . . . . . 10
|
| 12 | 11 | ralbidv 2986 |
. . . . . . . . 9
|
| 13 | 9, 12 | anbi12d 747 |
. . . . . . . 8
|
| 14 | 13 | rspcev 3309 |
. . . . . . 7
|
| 15 | 6, 5, 14 | syl2anc 693 |
. . . . . 6
|
| 16 | 2, 15 | supeu 8360 |
. . . . 5
|
| 17 | 13 | riota2 6633 |
. . . . 5
|
| 18 | 6, 16, 17 | syl2anc 693 |
. . . 4
|
| 19 | 5, 18 | mpbid 222 |
. . 3
|
| 20 | 3, 19 | eqtrd 2656 |
. 2
|
| 21 | 20 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-po 5035 df-so 5036 df-iota 5851 df-riota 6611 df-sup 8348 |
| This theorem is referenced by: eqsupd 8363 eqinf 8390 suprzcl2 11778 supxr 12143 |
| Copyright terms: Public domain | W3C validator |