| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqinf | Structured version Visualization version Unicode version | ||
| Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infexd.1 |
|
| Ref | Expression |
|---|---|
| eqinf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 8349 |
. . 3
| |
| 2 | infexd.1 |
. . . . . 6
| |
| 3 | cnvso 5674 |
. . . . . 6
| |
| 4 | 2, 3 | sylib 208 |
. . . . 5
|
| 5 | 4 | eqsup 8362 |
. . . 4
|
| 6 | vex 3203 |
. . . . . . . . . . 11
| |
| 7 | brcnvg 5303 |
. . . . . . . . . . . 12
| |
| 8 | 7 | bicomd 213 |
. . . . . . . . . . 11
|
| 9 | 6, 8 | mpan2 707 |
. . . . . . . . . 10
|
| 10 | 9 | notbid 308 |
. . . . . . . . 9
|
| 11 | 10 | ralbidv 2986 |
. . . . . . . 8
|
| 12 | brcnvg 5303 |
. . . . . . . . . . . 12
| |
| 13 | 6, 12 | mpan 706 |
. . . . . . . . . . 11
|
| 14 | 13 | bicomd 213 |
. . . . . . . . . 10
|
| 15 | vex 3203 |
. . . . . . . . . . . . . 14
| |
| 16 | 6, 15 | brcnv 5305 |
. . . . . . . . . . . . 13
|
| 17 | 16 | a1i 11 |
. . . . . . . . . . . 12
|
| 18 | 17 | bicomd 213 |
. . . . . . . . . . 11
|
| 19 | 18 | rexbidv 3052 |
. . . . . . . . . 10
|
| 20 | 14, 19 | imbi12d 334 |
. . . . . . . . 9
|
| 21 | 20 | ralbidv 2986 |
. . . . . . . 8
|
| 22 | 11, 21 | anbi12d 747 |
. . . . . . 7
|
| 23 | 22 | pm5.32i 669 |
. . . . . 6
|
| 24 | 3anass 1042 |
. . . . . 6
| |
| 25 | 3anass 1042 |
. . . . . 6
| |
| 26 | 23, 24, 25 | 3bitr4i 292 |
. . . . 5
|
| 27 | 26 | biimpi 206 |
. . . 4
|
| 28 | 5, 27 | impel 485 |
. . 3
|
| 29 | 1, 28 | syl5eq 2668 |
. 2
|
| 30 | 29 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-cnv 5122 df-iota 5851 df-riota 6611 df-sup 8348 df-inf 8349 |
| This theorem is referenced by: eqinfd 8391 infxr 39583 |
| Copyright terms: Public domain | W3C validator |