MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erov Structured version   Visualization version   Unicode version

Theorem erov 7844
Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1  |-  J  =  ( A /. R
)
eropr.2  |-  K  =  ( B /. S
)
eropr.3  |-  ( ph  ->  T  e.  Z )
eropr.4  |-  ( ph  ->  R  Er  U )
eropr.5  |-  ( ph  ->  S  Er  V )
eropr.6  |-  ( ph  ->  T  Er  W )
eropr.7  |-  ( ph  ->  A  C_  U )
eropr.8  |-  ( ph  ->  B  C_  V )
eropr.9  |-  ( ph  ->  C  C_  W )
eropr.10  |-  ( ph  ->  .+  : ( A  X.  B ) --> C )
eropr.11  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B
) ) )  -> 
( ( r R s  /\  t S u )  ->  (
r  .+  t ) T ( s  .+  u ) ) )
eropr.12  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) }
eropr.13  |-  ( ph  ->  R  e.  X )
eropr.14  |-  ( ph  ->  S  e.  Y )
Assertion
Ref Expression
erov  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  ( [ P ] R  .+^  [ Q ] S )  =  [
( P  .+  Q
) ] T )
Distinct variable groups:    q, p, r, s, t, u, x, y, z, A    B, p, q, r, s, t, u, x, y, z    J, p, q, x, y, z    P, p, q, r, s, t, u, x, y, z    R, p, q, r, s, t, u, x, y, z    K, p, q, x, y, z    Q, p, q, r, s, t, u, x, y, z    S, p, q, r, s, t, u, x, y, z    .+ , p, q, r, s, t, u, x, y, z    ph, p, q, r, s, t, u, x, y, z    T, p, q, r, s, t, u, x, y, z    X, p, q, r, s, t, u, z    Y, p, q, r, s, t, u, z
Allowed substitution hints:    C( x, y, z, u, t, s, r, q, p)    .+^ ( x, y, z, u, t, s, r, q, p)    U( x, y, z, u, t, s, r, q, p)    J( u, t, s, r)    K( u, t, s, r)    V( x, y, z, u, t, s, r, q, p)    W( x, y, z, u, t, s, r, q, p)    X( x, y)    Y( x, y)    Z( x, y, z, u, t, s, r, q, p)

Proof of Theorem erov
StepHypRef Expression
1 eropr.1 . . . . 5  |-  J  =  ( A /. R
)
2 eropr.2 . . . . 5  |-  K  =  ( B /. S
)
3 eropr.3 . . . . 5  |-  ( ph  ->  T  e.  Z )
4 eropr.4 . . . . 5  |-  ( ph  ->  R  Er  U )
5 eropr.5 . . . . 5  |-  ( ph  ->  S  Er  V )
6 eropr.6 . . . . 5  |-  ( ph  ->  T  Er  W )
7 eropr.7 . . . . 5  |-  ( ph  ->  A  C_  U )
8 eropr.8 . . . . 5  |-  ( ph  ->  B  C_  V )
9 eropr.9 . . . . 5  |-  ( ph  ->  C  C_  W )
10 eropr.10 . . . . 5  |-  ( ph  ->  .+  : ( A  X.  B ) --> C )
11 eropr.11 . . . . 5  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B
) ) )  -> 
( ( r R s  /\  t S u )  ->  (
r  .+  t ) T ( s  .+  u ) ) )
12 eropr.12 . . . . 5  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) }
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12erovlem 7843 . . . 4  |-  ( ph  -> 
.+^  =  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) )
14133ad2ant1 1082 . . 3  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  .+^  =  ( x  e.  J , 
y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) ) )
15 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  x  =  [ P ] R
)
1615eqeq1d 2624 . . . . . . 7  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  (
x  =  [ p ] R  <->  [ P ] R  =  [ p ] R
) )
17 simprr 796 . . . . . . . 8  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  y  =  [ Q ] S
)
1817eqeq1d 2624 . . . . . . 7  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  (
y  =  [ q ] S  <->  [ Q ] S  =  [
q ] S ) )
1916, 18anbi12d 747 . . . . . 6  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  <->  ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
) ) )
2019anbi1d 741 . . . . 5  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  (
( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  <-> 
( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) )
21202rexbidv 3057 . . . 4  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  ( E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  <->  E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) )
2221iotabidv 5872 . . 3  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  (
x  =  [ P ] R  /\  y  =  [ Q ] S
) )  ->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) )
23 eropr.13 . . . . 5  |-  ( ph  ->  R  e.  X )
24 ecelqsg 7802 . . . . . 6  |-  ( ( R  e.  X  /\  P  e.  A )  ->  [ P ] R  e.  ( A /. R
) )
2524, 1syl6eleqr 2712 . . . . 5  |-  ( ( R  e.  X  /\  P  e.  A )  ->  [ P ] R  e.  J )
2623, 25sylan 488 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  [ P ] R  e.  J
)
27263adant3 1081 . . 3  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  [ P ] R  e.  J
)
28 eropr.14 . . . . 5  |-  ( ph  ->  S  e.  Y )
29 ecelqsg 7802 . . . . . 6  |-  ( ( S  e.  Y  /\  Q  e.  B )  ->  [ Q ] S  e.  ( B /. S
) )
3029, 2syl6eleqr 2712 . . . . 5  |-  ( ( S  e.  Y  /\  Q  e.  B )  ->  [ Q ] S  e.  K )
3128, 30sylan 488 . . . 4  |-  ( (
ph  /\  Q  e.  B )  ->  [ Q ] S  e.  K
)
32313adant2 1080 . . 3  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  [ Q ] S  e.  K
)
33 iotaex 5868 . . . 4  |-  ( iota z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  e.  _V
3433a1i 11 . . 3  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  ( iota z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  e.  _V )
3514, 22, 27, 32, 34ovmpt2d 6788 . 2  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  ( [ P ] R  .+^  [ Q ] S )  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) )
36 eqid 2622 . . . . . . 7  |-  [ P ] R  =  [ P ] R
37 eqid 2622 . . . . . . 7  |-  [ Q ] S  =  [ Q ] S
3836, 37pm3.2i 471 . . . . . 6  |-  ( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [ Q ] S
)
39 eqid 2622 . . . . . 6  |-  [ ( P  .+  Q ) ] T  =  [
( P  .+  Q
) ] T
4038, 39pm3.2i 471 . . . . 5  |-  ( ( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [ Q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( P  .+  Q ) ] T )
41 eceq1 7782 . . . . . . . . 9  |-  ( p  =  P  ->  [ p ] R  =  [ P ] R )
4241eqeq2d 2632 . . . . . . . 8  |-  ( p  =  P  ->  ( [ P ] R  =  [ p ] R  <->  [ P ] R  =  [ P ] R
) )
4342anbi1d 741 . . . . . . 7  |-  ( p  =  P  ->  (
( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [
q ] S )  <-> 
( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [
q ] S ) ) )
44 oveq1 6657 . . . . . . . . 9  |-  ( p  =  P  ->  (
p  .+  q )  =  ( P  .+  q ) )
4544eceq1d 7783 . . . . . . . 8  |-  ( p  =  P  ->  [ ( p  .+  q ) ] T  =  [
( P  .+  q
) ] T )
4645eqeq2d 2632 . . . . . . 7  |-  ( p  =  P  ->  ( [ ( P  .+  Q ) ] T  =  [ ( p  .+  q ) ] T  <->  [ ( P  .+  Q
) ] T  =  [ ( P  .+  q ) ] T
) )
4743, 46anbi12d 747 . . . . . 6  |-  ( p  =  P  ->  (
( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( p  .+  q ) ] T )  <->  ( ( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [ q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( P  .+  q ) ] T ) ) )
48 eceq1 7782 . . . . . . . . 9  |-  ( q  =  Q  ->  [ q ] S  =  [ Q ] S )
4948eqeq2d 2632 . . . . . . . 8  |-  ( q  =  Q  ->  ( [ Q ] S  =  [ q ] S  <->  [ Q ] S  =  [ Q ] S
) )
5049anbi2d 740 . . . . . . 7  |-  ( q  =  Q  ->  (
( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [
q ] S )  <-> 
( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [ Q ] S ) ) )
51 oveq2 6658 . . . . . . . . 9  |-  ( q  =  Q  ->  ( P  .+  q )  =  ( P  .+  Q
) )
5251eceq1d 7783 . . . . . . . 8  |-  ( q  =  Q  ->  [ ( P  .+  q ) ] T  =  [
( P  .+  Q
) ] T )
5352eqeq2d 2632 . . . . . . 7  |-  ( q  =  Q  ->  ( [ ( P  .+  Q ) ] T  =  [ ( P  .+  q ) ] T  <->  [ ( P  .+  Q
) ] T  =  [ ( P  .+  Q ) ] T
) )
5450, 53anbi12d 747 . . . . . 6  |-  ( q  =  Q  ->  (
( ( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [
q ] S )  /\  [ ( P 
.+  Q ) ] T  =  [ ( P  .+  q ) ] T )  <->  ( ( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [ Q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( P  .+  Q ) ] T ) ) )
5547, 54rspc2ev 3324 . . . . 5  |-  ( ( P  e.  A  /\  Q  e.  B  /\  ( ( [ P ] R  =  [ P ] R  /\  [ Q ] S  =  [ Q ] S )  /\  [ ( P  .+  Q
) ] T  =  [ ( P  .+  Q ) ] T
) )  ->  E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( p  .+  q ) ] T ) )
5640, 55mp3an3 1413 . . . 4  |-  ( ( P  e.  A  /\  Q  e.  B )  ->  E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( p  .+  q ) ] T ) )
57563adant1 1079 . . 3  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( p  .+  q ) ] T ) )
58 ecexg 7746 . . . . . 6  |-  ( T  e.  Z  ->  [ ( P  .+  Q ) ] T  e.  _V )
593, 58syl 17 . . . . 5  |-  ( ph  ->  [ ( P  .+  Q ) ] T  e.  _V )
60593ad2ant1 1082 . . . 4  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  [ ( P  .+  Q ) ] T  e.  _V )
61 simp1 1061 . . . . 5  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  ph )
621, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11eroveu 7842 . . . . 5  |-  ( (
ph  /\  ( [ P ] R  e.  J  /\  [ Q ] S  e.  K ) )  ->  E! z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )
6361, 27, 32, 62syl12anc 1324 . . . 4  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  E! z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )
64 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  z  =  [ ( P  .+  Q ) ] T
)  ->  z  =  [ ( P  .+  Q ) ] T
)
6564eqeq1d 2624 . . . . . 6  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  z  =  [ ( P  .+  Q ) ] T
)  ->  ( z  =  [ ( p  .+  q ) ] T  <->  [ ( P  .+  Q
) ] T  =  [ ( p  .+  q ) ] T
) )
6665anbi2d 740 . . . . 5  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  z  =  [ ( P  .+  Q ) ] T
)  ->  ( (
( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  <-> 
( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( p  .+  q ) ] T ) ) )
67662rexbidv 3057 . . . 4  |-  ( ( ( ph  /\  P  e.  A  /\  Q  e.  B )  /\  z  =  [ ( P  .+  Q ) ] T
)  ->  ( E. p  e.  A  E. q  e.  B  (
( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  <->  E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  [ ( P  .+  Q ) ] T  =  [ ( p  .+  q ) ] T ) ) )
6860, 63, 67iota2d 5876 . . 3  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  ( E. p  e.  A  E. q  e.  B  (
( [ P ] R  =  [ p ] R  /\  [ Q ] S  =  [
q ] S )  /\  [ ( P 
.+  Q ) ] T  =  [ ( p  .+  q ) ] T )  <->  ( iota z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  =  [
( P  .+  Q
) ] T ) )
6957, 68mpbid 222 . 2  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  ( iota z E. p  e.  A  E. q  e.  B  ( ( [ P ] R  =  [
p ] R  /\  [ Q ] S  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  =  [
( P  .+  Q
) ] T )
7035, 69eqtrd 2656 1  |-  ( (
ph  /\  P  e.  A  /\  Q  e.  B
)  ->  ( [ P ] R  .+^  [ Q ] S )  =  [
( P  .+  Q
) ] T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E!weu 2470   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    X. cxp 5112   iotacio 5849   -->wf 5884  (class class class)co 6650   {coprab 6651    |-> cmpt2 6652    Er wer 7739   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-ec 7744  df-qs 7748
This theorem is referenced by:  erov2  7846
  Copyright terms: Public domain W3C validator