| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eroprf | Structured version Visualization version Unicode version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| eropr.13 |
|
| eropr.14 |
|
| eropr.15 |
|
| Ref | Expression |
|---|---|
| eroprf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.3 |
. . . . . . . . . . . 12
| |
| 2 | 1 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 3 | eropr.10 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | adantr 481 |
. . . . . . . . . . . 12
|
| 5 | 4 | fovrnda 6805 |
. . . . . . . . . . 11
|
| 6 | ecelqsg 7802 |
. . . . . . . . . . 11
| |
| 7 | 2, 5, 6 | syl2anc 693 |
. . . . . . . . . 10
|
| 8 | eropr.15 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl6eleqr 2712 |
. . . . . . . . 9
|
| 10 | eleq1a 2696 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
|
| 12 | 11 | adantld 483 |
. . . . . . 7
|
| 13 | 12 | rexlimdvva 3038 |
. . . . . 6
|
| 14 | 13 | abssdv 3676 |
. . . . 5
|
| 15 | eropr.1 |
. . . . . . 7
| |
| 16 | eropr.2 |
. . . . . . 7
| |
| 17 | eropr.4 |
. . . . . . 7
| |
| 18 | eropr.5 |
. . . . . . 7
| |
| 19 | eropr.6 |
. . . . . . 7
| |
| 20 | eropr.7 |
. . . . . . 7
| |
| 21 | eropr.8 |
. . . . . . 7
| |
| 22 | eropr.9 |
. . . . . . 7
| |
| 23 | eropr.11 |
. . . . . . 7
| |
| 24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 7842 |
. . . . . 6
|
| 25 | iotacl 5874 |
. . . . . 6
| |
| 26 | 24, 25 | syl 17 |
. . . . 5
|
| 27 | 14, 26 | sseldd 3604 |
. . . 4
|
| 28 | 27 | ralrimivva 2971 |
. . 3
|
| 29 | eqid 2622 |
. . . 4
| |
| 30 | 29 | fmpt2 7237 |
. . 3
|
| 31 | 28, 30 | sylib 208 |
. 2
|
| 32 | eropr.12 |
. . . 4
| |
| 33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 7843 |
. . 3
|
| 34 | 33 | feq1d 6030 |
. 2
|
| 35 | 31, 34 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-ec 7744 df-qs 7748 |
| This theorem is referenced by: eroprf2 7847 |
| Copyright terms: Public domain | W3C validator |