MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ersym Structured version   Visualization version   Unicode version

Theorem ersym 7754
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ersym  |-  ( ph  ->  B R A )

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3  |-  ( ph  ->  A R B )
2 ersym.1 . . . . . 6  |-  ( ph  ->  R  Er  X )
3 errel 7751 . . . . . 6  |-  ( R  Er  X  ->  Rel  R )
42, 3syl 17 . . . . 5  |-  ( ph  ->  Rel  R )
5 brrelex12 5155 . . . . 5  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
64, 1, 5syl2anc 693 . . . 4  |-  ( ph  ->  ( A  e.  _V  /\  B  e.  _V )
)
7 brcnvg 5303 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
87ancoms 469 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
96, 8syl 17 . . 3  |-  ( ph  ->  ( B `' R A 
<->  A R B ) )
101, 9mpbird 247 . 2  |-  ( ph  ->  B `' R A )
11 df-er 7742 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
1211simp3bi 1078 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
132, 12syl 17 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
1413unssad 3790 . . 3  |-  ( ph  ->  `' R  C_  R )
1514ssbrd 4696 . 2  |-  ( ph  ->  ( B `' R A  ->  B R A ) )
1610, 15mpd 15 1  |-  ( ph  ->  B R A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   class class class wbr 4653   `'ccnv 5113   dom cdm 5114    o. ccom 5118   Rel wrel 5119    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-er 7742
This theorem is referenced by:  ercl2  7755  ersymb  7756  ertr2d  7759  ertr3d  7760  ertr4d  7761  erth  7791  erinxp  7821  nqereu  9751  nqerf  9752  1nqenq  9784  qusgrp2  17533  efginvrel2  18140  efgcpbllemb  18168  2idlcpbl  19234  tgptsmscls  21953
  Copyright terms: Public domain W3C validator