| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oprswap | Structured version Visualization version Unicode version | ||
| Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| Ref | Expression |
|---|---|
| f1oprswap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osng 6177 |
. . . . 5
| |
| 2 | 1 | anidms 677 |
. . . 4
|
| 3 | 2 | ad2antrr 762 |
. . 3
|
| 4 | dfsn2 4190 |
. . . . . 6
| |
| 5 | opeq2 4403 |
. . . . . . 7
| |
| 6 | opeq1 4402 |
. . . . . . 7
| |
| 7 | 5, 6 | preq12d 4276 |
. . . . . 6
|
| 8 | 4, 7 | syl5eq 2668 |
. . . . 5
|
| 9 | dfsn2 4190 |
. . . . . 6
| |
| 10 | preq2 4269 |
. . . . . 6
| |
| 11 | 9, 10 | syl5eq 2668 |
. . . . 5
|
| 12 | 8, 11, 11 | f1oeq123d 6133 |
. . . 4
|
| 13 | 12 | adantl 482 |
. . 3
|
| 14 | 3, 13 | mpbid 222 |
. 2
|
| 15 | simpll 790 |
. . . 4
| |
| 16 | simplr 792 |
. . . 4
| |
| 17 | simpr 477 |
. . . 4
| |
| 18 | fnprg 5947 |
. . . 4
| |
| 19 | 15, 16, 16, 15, 17, 18 | syl221anc 1337 |
. . 3
|
| 20 | cnvsng 5621 |
. . . . . . . . 9
| |
| 21 | cnvsng 5621 |
. . . . . . . . . 10
| |
| 22 | 21 | ancoms 469 |
. . . . . . . . 9
|
| 23 | 20, 22 | uneq12d 3768 |
. . . . . . . 8
|
| 24 | uncom 3757 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl6eq 2672 |
. . . . . . 7
|
| 26 | 25 | adantr 481 |
. . . . . 6
|
| 27 | df-pr 4180 |
. . . . . . . 8
| |
| 28 | 27 | cnveqi 5297 |
. . . . . . 7
|
| 29 | cnvun 5538 |
. . . . . . 7
| |
| 30 | 28, 29 | eqtri 2644 |
. . . . . 6
|
| 31 | 26, 30, 27 | 3eqtr4g 2681 |
. . . . 5
|
| 32 | 31 | fneq1d 5981 |
. . . 4
|
| 33 | 19, 32 | mpbird 247 |
. . 3
|
| 34 | dff1o4 6145 |
. . 3
| |
| 35 | 19, 33, 34 | sylanbrc 698 |
. 2
|
| 36 | 14, 35 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
| This theorem is referenced by: fveqf1o 6557 symg2bas 17818 subfacp1lem2a 31162 |
| Copyright terms: Public domain | W3C validator |