| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqf1o | Structured version Visualization version Unicode version | ||
| Description: Given a bijection |
| Ref | Expression |
|---|---|
| fveqf1o.1 |
|
| Ref | Expression |
|---|---|
| fveqf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . 4
| |
| 2 | f1oi 6174 |
. . . . . . . 8
| |
| 3 | 2 | a1i 11 |
. . . . . . 7
|
| 4 | simp2 1062 |
. . . . . . . 8
| |
| 5 | f1ocnv 6149 |
. . . . . . . . . 10
| |
| 6 | f1of 6137 |
. . . . . . . . . 10
| |
| 7 | 1, 5, 6 | 3syl 18 |
. . . . . . . . 9
|
| 8 | simp3 1063 |
. . . . . . . . 9
| |
| 9 | 7, 8 | ffvelrnd 6360 |
. . . . . . . 8
|
| 10 | f1oprswap 6180 |
. . . . . . . 8
| |
| 11 | 4, 9, 10 | syl2anc 693 |
. . . . . . 7
|
| 12 | incom 3805 |
. . . . . . . . 9
| |
| 13 | disjdif 4040 |
. . . . . . . . 9
| |
| 14 | 12, 13 | eqtri 2644 |
. . . . . . . 8
|
| 15 | 14 | a1i 11 |
. . . . . . 7
|
| 16 | f1oun 6156 |
. . . . . . 7
| |
| 17 | 3, 11, 15, 15, 16 | syl22anc 1327 |
. . . . . 6
|
| 18 | uncom 3757 |
. . . . . . . 8
| |
| 19 | prssi 4353 |
. . . . . . . . . 10
| |
| 20 | 4, 9, 19 | syl2anc 693 |
. . . . . . . . 9
|
| 21 | undif 4049 |
. . . . . . . . 9
| |
| 22 | 20, 21 | sylib 208 |
. . . . . . . 8
|
| 23 | 18, 22 | syl5eq 2668 |
. . . . . . 7
|
| 24 | f1oeq2 6128 |
. . . . . . 7
| |
| 25 | 23, 24 | syl 17 |
. . . . . 6
|
| 26 | 17, 25 | mpbid 222 |
. . . . 5
|
| 27 | f1oeq3 6129 |
. . . . . 6
| |
| 28 | 23, 27 | syl 17 |
. . . . 5
|
| 29 | 26, 28 | mpbid 222 |
. . . 4
|
| 30 | f1oco 6159 |
. . . 4
| |
| 31 | 1, 29, 30 | syl2anc 693 |
. . 3
|
| 32 | fveqf1o.1 |
. . . 4
| |
| 33 | f1oeq1 6127 |
. . . 4
| |
| 34 | 32, 33 | ax-mp 5 |
. . 3
|
| 35 | 31, 34 | sylibr 224 |
. 2
|
| 36 | 32 | fveq1i 6192 |
. . . 4
|
| 37 | f1of 6137 |
. . . . . 6
| |
| 38 | 29, 37 | syl 17 |
. . . . 5
|
| 39 | fvco3 6275 |
. . . . 5
| |
| 40 | 38, 4, 39 | syl2anc 693 |
. . . 4
|
| 41 | 36, 40 | syl5eq 2668 |
. . 3
|
| 42 | fnresi 6008 |
. . . . . . . 8
| |
| 43 | 42 | a1i 11 |
. . . . . . 7
|
| 44 | f1ofn 6138 |
. . . . . . . 8
| |
| 45 | 11, 44 | syl 17 |
. . . . . . 7
|
| 46 | prid1g 4295 |
. . . . . . . 8
| |
| 47 | 4, 46 | syl 17 |
. . . . . . 7
|
| 48 | fvun2 6270 |
. . . . . . 7
| |
| 49 | 43, 45, 15, 47, 48 | syl112anc 1330 |
. . . . . 6
|
| 50 | f1ofun 6139 |
. . . . . . . 8
| |
| 51 | 11, 50 | syl 17 |
. . . . . . 7
|
| 52 | opex 4932 |
. . . . . . . 8
| |
| 53 | 52 | prid1 4297 |
. . . . . . 7
|
| 54 | funopfv 6235 |
. . . . . . 7
| |
| 55 | 51, 53, 54 | mpisyl 21 |
. . . . . 6
|
| 56 | 49, 55 | eqtrd 2656 |
. . . . 5
|
| 57 | 56 | fveq2d 6195 |
. . . 4
|
| 58 | f1ocnvfv2 6533 |
. . . . 5
| |
| 59 | 1, 8, 58 | syl2anc 693 |
. . . 4
|
| 60 | 57, 59 | eqtrd 2656 |
. . 3
|
| 61 | 41, 60 | eqtrd 2656 |
. 2
|
| 62 | 35, 61 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: infxpenc2 8845 |
| Copyright terms: Public domain | W3C validator |