MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oprg Structured version   Visualization version   Unicode version

Theorem f1oprg 6181
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function, analogous to f1oprswap 6180. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oprg  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( A  =/= 
C  /\  B  =/=  D )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D }
) )

Proof of Theorem f1oprg
StepHypRef Expression
1 f1osng 6177 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
21ad2antrr 762 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
3 f1osng 6177 . . . . 5  |-  ( ( C  e.  X  /\  D  e.  Y )  ->  { <. C ,  D >. } : { C }
-1-1-onto-> { D } )
43ad2antlr 763 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. C ,  D >. } : { C }
-1-1-onto-> { D } )
5 disjsn2 4247 . . . . 5  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
65ad2antrl 764 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { A }  i^i  { C } )  =  (/) )
7 disjsn2 4247 . . . . 5  |-  ( B  =/=  D  ->  ( { B }  i^i  { D } )  =  (/) )
87ad2antll 765 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { B }  i^i  { D } )  =  (/) )
9 f1oun 6156 . . . 4  |-  ( ( ( { <. A ,  B >. } : { A } -1-1-onto-> { B }  /\  {
<. C ,  D >. } : { C } -1-1-onto-> { D } )  /\  (
( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { D } )  =  (/) ) )  ->  ( { <. A ,  B >. }  u.  { <. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } ) )
102, 4, 6, 8, 9syl22anc 1327 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { <. A ,  B >. }  u.  { <. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } ) )
11 df-pr 4180 . . . . . 6  |-  { <. A ,  B >. ,  <. C ,  D >. }  =  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )
1211eqcomi 2631 . . . . 5  |-  ( {
<. A ,  B >. }  u.  { <. C ,  D >. } )  =  { <. A ,  B >. ,  <. C ,  D >. }
1312a1i 11 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { <. A ,  B >. }  u.  { <. C ,  D >. } )  =  { <. A ,  B >. ,  <. C ,  D >. } )
14 df-pr 4180 . . . . . 6  |-  { A ,  C }  =  ( { A }  u.  { C } )
1514eqcomi 2631 . . . . 5  |-  ( { A }  u.  { C } )  =  { A ,  C }
1615a1i 11 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { A }  u.  { C } )  =  { A ,  C } )
17 df-pr 4180 . . . . . 6  |-  { B ,  D }  =  ( { B }  u.  { D } )
1817eqcomi 2631 . . . . 5  |-  ( { B }  u.  { D } )  =  { B ,  D }
1918a1i 11 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { B }  u.  { D } )  =  { B ,  D } )
2013, 16, 19f1oeq123d 6133 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( ( { <. A ,  B >. }  u.  {
<. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } )  <->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D } ) )
2110, 20mpbid 222 . 2  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D } )
2221ex 450 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( A  =/= 
C  /\  B  =/=  D )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  f1prex  6539  s2f1o  13661  f1oun2prg  13662  symg2bas  17818  poimirlem9  33418  poimirlem15  33424
  Copyright terms: Public domain W3C validator