MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbun Structured version   Visualization version   Unicode version

Theorem fbun 21644
Description: A necessary and sufficient condition for the union of two filter bases to also be a filter base. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbun  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( F  u.  G
)  e.  ( fBas `  X )  <->  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
Distinct variable groups:    x, y,
z, G    x, F, y, z    x, X, y, z

Proof of Theorem fbun
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elun1 3780 . . . . 5  |-  ( x  e.  F  ->  x  e.  ( F  u.  G
) )
2 elun2 3781 . . . . 5  |-  ( y  e.  G  ->  y  e.  ( F  u.  G
) )
31, 2anim12i 590 . . . 4  |-  ( ( x  e.  F  /\  y  e.  G )  ->  ( x  e.  ( F  u.  G )  /\  y  e.  ( F  u.  G ) ) )
4 fbasssin 21640 . . . . 5  |-  ( ( ( F  u.  G
)  e.  ( fBas `  X )  /\  x  e.  ( F  u.  G
)  /\  y  e.  ( F  u.  G
) )  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
543expb 1266 . . . 4  |-  ( ( ( F  u.  G
)  e.  ( fBas `  X )  /\  (
x  e.  ( F  u.  G )  /\  y  e.  ( F  u.  G ) ) )  ->  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y ) )
63, 5sylan2 491 . . 3  |-  ( ( ( F  u.  G
)  e.  ( fBas `  X )  /\  (
x  e.  F  /\  y  e.  G )
)  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
76ralrimivva 2971 . 2  |-  ( ( F  u.  G )  e.  ( fBas `  X
)  ->  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
8 fbsspw 21636 . . . . . . 7  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ~P X )
98adantr 481 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  F  C_ 
~P X )
10 fbsspw 21636 . . . . . . 7  |-  ( G  e.  ( fBas `  X
)  ->  G  C_  ~P X )
1110adantl 482 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  G  C_ 
~P X )
129, 11unssd 3789 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( F  u.  G )  C_ 
~P X )
1312a1d 25 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  ( F  u.  G )  C_ 
~P X ) )
14 ssun1 3776 . . . . . . . 8  |-  F  C_  ( F  u.  G
)
15 fbasne0 21634 . . . . . . . 8  |-  ( F  e.  ( fBas `  X
)  ->  F  =/=  (/) )
16 ssn0 3976 . . . . . . . 8  |-  ( ( F  C_  ( F  u.  G )  /\  F  =/=  (/) )  ->  ( F  u.  G )  =/=  (/) )
1714, 15, 16sylancr 695 . . . . . . 7  |-  ( F  e.  ( fBas `  X
)  ->  ( F  u.  G )  =/=  (/) )
1817adantr 481 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( F  u.  G )  =/=  (/) )
1918a1d 25 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  ( F  u.  G )  =/=  (/) ) )
20 0nelfb 21635 . . . . . . 7  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  F
)
21 0nelfb 21635 . . . . . . 7  |-  ( G  e.  ( fBas `  X
)  ->  -.  (/)  e.  G
)
22 df-nel 2898 . . . . . . . . 9  |-  ( (/)  e/  ( F  u.  G
)  <->  -.  (/)  e.  ( F  u.  G ) )
23 elun 3753 . . . . . . . . . 10  |-  ( (/)  e.  ( F  u.  G
)  <->  ( (/)  e.  F  \/  (/)  e.  G ) )
2423notbii 310 . . . . . . . . 9  |-  ( -.  (/)  e.  ( F  u.  G )  <->  -.  ( (/) 
e.  F  \/  (/)  e.  G
) )
25 ioran 511 . . . . . . . . 9  |-  ( -.  ( (/)  e.  F  \/  (/)  e.  G )  <-> 
( -.  (/)  e.  F  /\  -.  (/)  e.  G ) )
2622, 24, 253bitri 286 . . . . . . . 8  |-  ( (/)  e/  ( F  u.  G
)  <->  ( -.  (/)  e.  F  /\  -.  (/)  e.  G ) )
2726biimpri 218 . . . . . . 7  |-  ( ( -.  (/)  e.  F  /\  -.  (/)  e.  G )  ->  (/)  e/  ( F  u.  G ) )
2820, 21, 27syl2an 494 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (/)  e/  ( F  u.  G )
)
2928a1d 25 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  (/)  e/  ( F  u.  G )
) )
30 fbasssin 21640 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( fBas `  X )  /\  x  e.  F  /\  y  e.  F )  ->  E. z  e.  F  z  C_  ( x  i^i  y
) )
31 ssrexv 3667 . . . . . . . . . . . . 13  |-  ( F 
C_  ( F  u.  G )  ->  ( E. z  e.  F  z  C_  ( x  i^i  y )  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
3214, 30, 31mpsyl 68 . . . . . . . . . . . 12  |-  ( ( F  e.  ( fBas `  X )  /\  x  e.  F  /\  y  e.  F )  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
33323expb 1266 . . . . . . . . . . 11  |-  ( ( F  e.  ( fBas `  X )  /\  (
x  e.  F  /\  y  e.  F )
)  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
3433ralrimivva 2971 . . . . . . . . . 10  |-  ( F  e.  ( fBas `  X
)  ->  A. x  e.  F  A. y  e.  F  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
3534adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  A. x  e.  F  A. y  e.  F  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
36 pm3.2 463 . . . . . . . . 9  |-  ( A. x  e.  F  A. y  e.  F  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  ->  ( A. x  e.  F  A. y  e.  F  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  /\  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) ) )
3735, 36syl 17 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  ( A. x  e.  F  A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) ) ) )
38 r19.26 3064 . . . . . . . . 9  |-  ( A. x  e.  F  ( A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) )  <->  ( A. x  e.  F  A. y  e.  F  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  /\  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
39 ralun 3795 . . . . . . . . . 10  |-  ( ( A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) )  ->  A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
4039ralimi 2952 . . . . . . . . 9  |-  ( A. x  e.  F  ( A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) )  ->  A. x  e.  F  A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
4138, 40sylbir 225 . . . . . . . 8  |-  ( ( A. x  e.  F  A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) )  ->  A. x  e.  F  A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
4237, 41syl6 35 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  A. x  e.  F  A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
43 ralcom 3098 . . . . . . . . . . . 12  |-  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  <->  A. y  e.  G  A. x  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y ) )
44 ineq1 3807 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  (
x  i^i  y )  =  ( w  i^i  y ) )
4544sseq2d 3633 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  (
z  C_  ( x  i^i  y )  <->  z  C_  ( w  i^i  y
) ) )
4645rexbidv 3052 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  <->  E. z  e.  ( F  u.  G
) z  C_  (
w  i^i  y )
) )
4746cbvralv 3171 . . . . . . . . . . . . 13  |-  ( A. x  e.  F  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  <->  A. w  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( w  i^i  y ) )
4847ralbii 2980 . . . . . . . . . . . 12  |-  ( A. y  e.  G  A. x  e.  F  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  <->  A. y  e.  G  A. w  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( w  i^i  y ) )
49 ineq2 3808 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
w  i^i  y )  =  ( w  i^i  x ) )
5049sseq2d 3633 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
z  C_  ( w  i^i  y )  <->  z  C_  ( w  i^i  x
) ) )
5150rexbidv 3052 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( E. z  e.  ( F  u.  G )
z  C_  ( w  i^i  y )  <->  E. z  e.  ( F  u.  G
) z  C_  (
w  i^i  x )
) )
52 ineq1 3807 . . . . . . . . . . . . . . . 16  |-  ( w  =  y  ->  (
w  i^i  x )  =  ( y  i^i  x ) )
53 incom 3805 . . . . . . . . . . . . . . . 16  |-  ( y  i^i  x )  =  ( x  i^i  y
)
5452, 53syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( w  =  y  ->  (
w  i^i  x )  =  ( x  i^i  y ) )
5554sseq2d 3633 . . . . . . . . . . . . . 14  |-  ( w  =  y  ->  (
z  C_  ( w  i^i  x )  <->  z  C_  ( x  i^i  y
) ) )
5655rexbidv 3052 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  ( E. z  e.  ( F  u.  G )
z  C_  ( w  i^i  x )  <->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
5751, 56cbvral2v 3179 . . . . . . . . . . . 12  |-  ( A. y  e.  G  A. w  e.  F  E. z  e.  ( F  u.  G ) z  C_  ( w  i^i  y
)  <->  A. x  e.  G  A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y ) )
5843, 48, 573bitri 286 . . . . . . . . . . 11  |-  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  <->  A. x  e.  G  A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y ) )
5958biimpi 206 . . . . . . . . . 10  |-  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  ->  A. x  e.  G  A. y  e.  F  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
60 ssun2 3777 . . . . . . . . . . . . . 14  |-  G  C_  ( F  u.  G
)
61 fbasssin 21640 . . . . . . . . . . . . . 14  |-  ( ( G  e.  ( fBas `  X )  /\  x  e.  G  /\  y  e.  G )  ->  E. z  e.  G  z  C_  ( x  i^i  y
) )
62 ssrexv 3667 . . . . . . . . . . . . . 14  |-  ( G 
C_  ( F  u.  G )  ->  ( E. z  e.  G  z  C_  ( x  i^i  y )  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
6360, 61, 62mpsyl 68 . . . . . . . . . . . . 13  |-  ( ( G  e.  ( fBas `  X )  /\  x  e.  G  /\  y  e.  G )  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
64633expb 1266 . . . . . . . . . . . 12  |-  ( ( G  e.  ( fBas `  X )  /\  (
x  e.  G  /\  y  e.  G )
)  ->  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
6564ralrimivva 2971 . . . . . . . . . . 11  |-  ( G  e.  ( fBas `  X
)  ->  A. x  e.  G  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
6665adantl 482 . . . . . . . . . 10  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  A. x  e.  G  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
6759, 66anim12i 590 . . . . . . . . 9  |-  ( ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) ) )  -> 
( A. x  e.  G  A. y  e.  F  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )  /\  A. x  e.  G  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y ) ) )
6867expcom 451 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  ( A. x  e.  G  A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. x  e.  G  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) ) ) )
69 r19.26 3064 . . . . . . . . 9  |-  ( A. x  e.  G  ( A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) )  <->  ( A. x  e.  G  A. y  e.  F  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
)  /\  A. x  e.  G  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
7039ralimi 2952 . . . . . . . . 9  |-  ( A. x  e.  G  ( A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) )  ->  A. x  e.  G  A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
7169, 70sylbir 225 . . . . . . . 8  |-  ( ( A. x  e.  G  A. y  e.  F  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. x  e.  G  A. y  e.  G  E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y
) )  ->  A. x  e.  G  A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
7268, 71syl6 35 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  A. x  e.  G  A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
7342, 72jcad 555 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  ( A. x  e.  F  A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. x  e.  G  A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) ) )
74 ralun 3795 . . . . . 6  |-  ( ( A. x  e.  F  A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  /\  A. x  e.  G  A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)  ->  A. x  e.  ( F  u.  G
) A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
)
7573, 74syl6 35 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  A. x  e.  ( F  u.  G
) A. y  e.  ( F  u.  G
) E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
7619, 29, 753jcad 1243 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  (
( F  u.  G
)  =/=  (/)  /\  (/)  e/  ( F  u.  G )  /\  A. x  e.  ( F  u.  G ) A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y ) ) ) )
7713, 76jcad 555 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  (
( F  u.  G
)  C_  ~P X  /\  ( ( F  u.  G )  =/=  (/)  /\  (/)  e/  ( F  u.  G )  /\  A. x  e.  ( F  u.  G ) A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y ) ) ) ) )
78 elfvdm 6220 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  dom  fBas )
7978adantr 481 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  X  e.  dom  fBas )
80 isfbas2 21639 . . . 4  |-  ( X  e.  dom  fBas  ->  ( ( F  u.  G
)  e.  ( fBas `  X )  <->  ( ( F  u.  G )  C_ 
~P X  /\  (
( F  u.  G
)  =/=  (/)  /\  (/)  e/  ( F  u.  G )  /\  A. x  e.  ( F  u.  G ) A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y ) ) ) ) )
8179, 80syl 17 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( F  u.  G
)  e.  ( fBas `  X )  <->  ( ( F  u.  G )  C_ 
~P X  /\  (
( F  u.  G
)  =/=  (/)  /\  (/)  e/  ( F  u.  G )  /\  A. x  e.  ( F  u.  G ) A. y  e.  ( F  u.  G ) E. z  e.  ( F  u.  G ) z  C_  ( x  i^i  y ) ) ) ) )
8277, 81sylibrd 249 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G )
z  C_  ( x  i^i  y )  ->  ( F  u.  G )  e.  ( fBas `  X
) ) )
837, 82impbid2 216 1  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( F  u.  G
)  e.  ( fBas `  X )  <->  A. x  e.  F  A. y  e.  G  E. z  e.  ( F  u.  G
) z  C_  (
x  i^i  y )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   dom cdm 5114   ` cfv 5888   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator