| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbfinnfr | Structured version Visualization version Unicode version | ||
| Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| fbfinnfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . . 6
| |
| 2 | 1 | anbi2d 740 |
. . . . 5
|
| 3 | 2 | imbi1d 331 |
. . . 4
|
| 4 | eleq1 2689 |
. . . . . 6
| |
| 5 | 4 | anbi2d 740 |
. . . . 5
|
| 6 | 5 | imbi1d 331 |
. . . 4
|
| 7 | ibar 525 |
. . . . . . . . . . . 12
| |
| 8 | 7 | adantr 481 |
. . . . . . . . . . 11
|
| 9 | 8 | imbi1d 331 |
. . . . . . . . . 10
|
| 10 | bi2.04 376 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl6rbbr 279 |
. . . . . . . . 9
|
| 12 | 11 | albidv 1849 |
. . . . . . . 8
|
| 13 | df-ral 2917 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl6bbr 278 |
. . . . . . 7
|
| 15 | 0nelfb 21635 |
. . . . . . . . . . . . 13
| |
| 16 | eleq1 2689 |
. . . . . . . . . . . . . 14
| |
| 17 | 16 | notbid 308 |
. . . . . . . . . . . . 13
|
| 18 | 15, 17 | syl5ibrcom 237 |
. . . . . . . . . . . 12
|
| 19 | 18 | necon2ad 2809 |
. . . . . . . . . . 11
|
| 20 | 19 | imp 445 |
. . . . . . . . . 10
|
| 21 | ssn0 3976 |
. . . . . . . . . . 11
| |
| 22 | 21 | ex 450 |
. . . . . . . . . 10
|
| 23 | 20, 22 | syl5com 31 |
. . . . . . . . 9
|
| 24 | 23 | a1dd 50 |
. . . . . . . 8
|
| 25 | ssint 4493 |
. . . . . . . . . . . 12
| |
| 26 | 25 | notbii 310 |
. . . . . . . . . . 11
|
| 27 | rexnal 2995 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | bitr4i 267 |
. . . . . . . . . 10
|
| 29 | fbasssin 21640 |
. . . . . . . . . . . . 13
| |
| 30 | nssinpss 3856 |
. . . . . . . . . . . . . . . 16
| |
| 31 | sspsstr 3712 |
. . . . . . . . . . . . . . . 16
| |
| 32 | 30, 31 | sylan2b 492 |
. . . . . . . . . . . . . . 15
|
| 33 | 32 | expcom 451 |
. . . . . . . . . . . . . 14
|
| 34 | 33 | reximdv 3016 |
. . . . . . . . . . . . 13
|
| 35 | 29, 34 | syl5com 31 |
. . . . . . . . . . . 12
|
| 36 | 35 | 3expia 1267 |
. . . . . . . . . . 11
|
| 37 | 36 | rexlimdv 3030 |
. . . . . . . . . 10
|
| 38 | 28, 37 | syl5bi 232 |
. . . . . . . . 9
|
| 39 | r19.29 3072 |
. . . . . . . . . . 11
| |
| 40 | id 22 |
. . . . . . . . . . . . 13
| |
| 41 | 40 | imp 445 |
. . . . . . . . . . . 12
|
| 42 | 41 | rexlimivw 3029 |
. . . . . . . . . . 11
|
| 43 | 39, 42 | syl 17 |
. . . . . . . . . 10
|
| 44 | 43 | expcom 451 |
. . . . . . . . 9
|
| 45 | 38, 44 | syl6 35 |
. . . . . . . 8
|
| 46 | 24, 45 | pm2.61d 170 |
. . . . . . 7
|
| 47 | 14, 46 | sylbid 230 |
. . . . . 6
|
| 48 | 47 | com12 32 |
. . . . 5
|
| 49 | 48 | a1i 11 |
. . . 4
|
| 50 | 3, 6, 49 | findcard3 8203 |
. . 3
|
| 51 | 50 | com12 32 |
. 2
|
| 52 | 51 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fbas 19743 |
| This theorem is referenced by: filfinnfr 21681 |
| Copyright terms: Public domain | W3C validator |