MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsneii Structured version   Visualization version   Unicode version

Theorem fclsneii 21821
Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsneii  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  ( N  i^i  S )  =/=  (/) )

Proof of Theorem fclsneii
StepHypRef Expression
1 simp1 1061 . . . . 5  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  A  e.  ( J  fClus  F ) )
2 fclstop 21815 . . . . 5  |-  ( A  e.  ( J  fClus  F )  ->  J  e.  Top )
31, 2syl 17 . . . 4  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  J  e.  Top )
4 simp2 1062 . . . . 5  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  N  e.  ( ( nei `  J
) `  { A } ) )
5 eqid 2622 . . . . . 6  |-  U. J  =  U. J
65neii1 20910 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  { A } ) )  ->  N  C_  U. J
)
73, 4, 6syl2anc 693 . . . 4  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  N  C_ 
U. J )
85ntrss2 20861 . . . 4  |-  ( ( J  e.  Top  /\  N  C_  U. J )  ->  ( ( int `  J ) `  N
)  C_  N )
93, 7, 8syl2anc 693 . . 3  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  (
( int `  J
) `  N )  C_  N )
10 ssrin 3838 . . 3  |-  ( ( ( int `  J
) `  N )  C_  N  ->  ( (
( int `  J
) `  N )  i^i  S )  C_  ( N  i^i  S ) )
119, 10syl 17 . 2  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  (
( ( int `  J
) `  N )  i^i  S )  C_  ( N  i^i  S ) )
125ntropn 20853 . . . 4  |-  ( ( J  e.  Top  /\  N  C_  U. J )  ->  ( ( int `  J ) `  N
)  e.  J )
133, 7, 12syl2anc 693 . . 3  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  (
( int `  J
) `  N )  e.  J )
145fclselbas 21820 . . . . . . . 8  |-  ( A  e.  ( J  fClus  F )  ->  A  e.  U. J )
151, 14syl 17 . . . . . . 7  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  A  e.  U. J )
1615snssd 4340 . . . . . 6  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  { A }  C_  U. J )
175neiint 20908 . . . . . 6  |-  ( ( J  e.  Top  /\  { A }  C_  U. J  /\  N  C_  U. J
)  ->  ( N  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  N
) ) )
183, 16, 7, 17syl3anc 1326 . . . . 5  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  ( N  e.  ( ( nei `  J ) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  N
) ) )
194, 18mpbid 222 . . . 4  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  { A }  C_  ( ( int `  J ) `  N
) )
20 snssg 4327 . . . . 5  |-  ( A  e.  U. J  -> 
( A  e.  ( ( int `  J
) `  N )  <->  { A }  C_  (
( int `  J
) `  N )
) )
2115, 20syl 17 . . . 4  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  ( A  e.  ( ( int `  J ) `  N )  <->  { A }  C_  ( ( int `  J ) `  N
) ) )
2219, 21mpbird 247 . . 3  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  A  e.  ( ( int `  J
) `  N )
)
23 simp3 1063 . . 3  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  S  e.  F )
24 fclsopni 21819 . . 3  |-  ( ( A  e.  ( J 
fClus  F )  /\  (
( ( int `  J
) `  N )  e.  J  /\  A  e.  ( ( int `  J
) `  N )  /\  S  e.  F
) )  ->  (
( ( int `  J
) `  N )  i^i  S )  =/=  (/) )
251, 13, 22, 23, 24syl13anc 1328 . 2  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  (
( ( int `  J
) `  N )  i^i  S )  =/=  (/) )
26 ssn0 3976 . 2  |-  ( ( ( ( ( int `  J ) `  N
)  i^i  S )  C_  ( N  i^i  S
)  /\  ( (
( int `  J
) `  N )  i^i  S )  =/=  (/) )  -> 
( N  i^i  S
)  =/=  (/) )
2711, 25, 26syl2anc 693 1  |-  ( ( A  e.  ( J 
fClus  F )  /\  N  e.  ( ( nei `  J
) `  { A } )  /\  S  e.  F )  ->  ( N  i^i  S )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   Topctop 20698   intcnt 20821   neicnei 20901    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-fcls 21745
This theorem is referenced by:  fclsnei  21823  fclsfnflim  21831
  Copyright terms: Public domain W3C validator