MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiint Structured version   Visualization version   Unicode version

Theorem neiint 20908
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neiint  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )

Proof of Theorem neiint
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21isnei 20907 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
323adant3 1081 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
433anibar 1229 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
5 simprrl 804 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  v )
61ssntr 20862 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
763adantl2 1218 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
87adantrrl 760 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  v  C_  ( ( int `  J
) `  N )
)
95, 8sstrd 3613 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  ( ( int `  J
) `  N )
)
109rexlimdvaa 3032 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  ->  S  C_  ( ( int `  J ) `  N
) ) )
11 simpl1 1064 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  J  e.  Top )
12 simpl3 1066 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  N  C_  X )
131ntropn 20853 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  e.  J )
1411, 12, 13syl2anc 693 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  e.  J )
15 simpr 477 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  S  C_  ( ( int `  J
) `  N )
)
161ntrss2 20861 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  C_  N )
1711, 12, 16syl2anc 693 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  C_  N )
18 sseq2 3627 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( S  C_  v  <->  S  C_  ( ( int `  J ) `
 N ) ) )
19 sseq1 3626 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( v  C_  N  <->  ( ( int `  J ) `  N
)  C_  N )
)
2018, 19anbi12d 747 . . . . . 6  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( ( S  C_  v  /\  v  C_  N )  <->  ( S  C_  ( ( int `  J
) `  N )  /\  ( ( int `  J
) `  N )  C_  N ) ) )
2120rspcev 3309 . . . . 5  |-  ( ( ( ( int `  J
) `  N )  e.  J  /\  ( S  C_  ( ( int `  J ) `  N
)  /\  ( ( int `  J ) `  N )  C_  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2214, 15, 17, 21syl12anc 1324 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2322ex 450 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( S  C_  ( ( int `  J ) `  N
)  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
2410, 23impbid 202 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  <->  S  C_  (
( int `  J
) `  N )
) )
254, 24bitrd 268 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   U.cuni 4436   ` cfv 5888   Topctop 20698   intcnt 20821   neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-ntr 20824  df-nei 20902
This theorem is referenced by:  opnnei  20924  topssnei  20928  iscnp4  21067  llycmpkgen2  21353  flimopn  21779  fclsneii  21821  fcfnei  21839  limcflf  23645  neiin  32327
  Copyright terms: Public domain W3C validator