MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopni Structured version   Visualization version   Unicode version

Theorem fclsopni 21819
Description: An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsopni  |-  ( ( A  e.  ( J 
fClus  F )  /\  ( U  e.  J  /\  A  e.  U  /\  S  e.  F )
)  ->  ( U  i^i  S )  =/=  (/) )

Proof of Theorem fclsopni
Dummy variables  o 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . . 9  |-  U. J  =  U. J
21fclsfil 21814 . . . . . . . 8  |-  ( A  e.  ( J  fClus  F )  ->  F  e.  ( Fil `  U. J
) )
3 fclstopon 21816 . . . . . . . 8  |-  ( A  e.  ( J  fClus  F )  ->  ( J  e.  (TopOn `  U. J )  <-> 
F  e.  ( Fil `  U. J ) ) )
42, 3mpbird 247 . . . . . . 7  |-  ( A  e.  ( J  fClus  F )  ->  J  e.  (TopOn `  U. J ) )
5 fclsopn 21818 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  F  e.  ( Fil `  U. J ) )  -> 
( A  e.  ( J  fClus  F )  <->  ( A  e.  U. J  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s
)  =/=  (/) ) ) ) )
64, 2, 5syl2anc 693 . . . . . 6  |-  ( A  e.  ( J  fClus  F )  ->  ( A  e.  ( J  fClus  F )  <-> 
( A  e.  U. J  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
76ibi 256 . . . . 5  |-  ( A  e.  ( J  fClus  F )  ->  ( A  e.  U. J  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
87simprd 479 . . . 4  |-  ( A  e.  ( J  fClus  F )  ->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
9 eleq2 2690 . . . . . 6  |-  ( o  =  U  ->  ( A  e.  o  <->  A  e.  U ) )
10 ineq1 3807 . . . . . . . 8  |-  ( o  =  U  ->  (
o  i^i  s )  =  ( U  i^i  s ) )
1110neeq1d 2853 . . . . . . 7  |-  ( o  =  U  ->  (
( o  i^i  s
)  =/=  (/)  <->  ( U  i^i  s )  =/=  (/) ) )
1211ralbidv 2986 . . . . . 6  |-  ( o  =  U  ->  ( A. s  e.  F  ( o  i^i  s
)  =/=  (/)  <->  A. s  e.  F  ( U  i^i  s )  =/=  (/) ) )
139, 12imbi12d 334 . . . . 5  |-  ( o  =  U  ->  (
( A  e.  o  ->  A. s  e.  F  ( o  i^i  s
)  =/=  (/) )  <->  ( A  e.  U  ->  A. s  e.  F  ( U  i^i  s )  =/=  (/) ) ) )
1413rspccv 3306 . . . 4  |-  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) )  ->  ( U  e.  J  ->  ( A  e.  U  ->  A. s  e.  F  ( U  i^i  s
)  =/=  (/) ) ) )
158, 14syl 17 . . 3  |-  ( A  e.  ( J  fClus  F )  ->  ( U  e.  J  ->  ( A  e.  U  ->  A. s  e.  F  ( U  i^i  s )  =/=  (/) ) ) )
16 ineq2 3808 . . . . 5  |-  ( s  =  S  ->  ( U  i^i  s )  =  ( U  i^i  S
) )
1716neeq1d 2853 . . . 4  |-  ( s  =  S  ->  (
( U  i^i  s
)  =/=  (/)  <->  ( U  i^i  S )  =/=  (/) ) )
1817rspccv 3306 . . 3  |-  ( A. s  e.  F  ( U  i^i  s )  =/=  (/)  ->  ( S  e.  F  ->  ( U  i^i  S )  =/=  (/) ) )
1915, 18syl8 76 . 2  |-  ( A  e.  ( J  fClus  F )  ->  ( U  e.  J  ->  ( A  e.  U  ->  ( S  e.  F  ->  ( U  i^i  S )  =/=  (/) ) ) ) )
20193imp2 1282 1  |-  ( ( A  e.  ( J 
fClus  F )  /\  ( U  e.  J  /\  A  e.  U  /\  S  e.  F )
)  ->  ( U  i^i  S )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573   (/)c0 3915   U.cuni 4436   ` cfv 5888  (class class class)co 6650  TopOnctopon 20715   Filcfil 21649    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-fil 21650  df-fcls 21745
This theorem is referenced by:  fclsneii  21821  supnfcls  21824  flimfnfcls  21832  cfilfcls  23072
  Copyright terms: Public domain W3C validator