MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1od Structured version   Visualization version   Unicode version

Theorem fcof1od 6549
Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 6542 and fcofo 6543. Formerly part of proof of fcof1o 6551. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1od.f  |-  ( ph  ->  F : A --> B )
fcof1od.g  |-  ( ph  ->  G : B --> A )
fcof1od.a  |-  ( ph  ->  ( G  o.  F
)  =  (  _I  |`  A ) )
fcof1od.b  |-  ( ph  ->  ( F  o.  G
)  =  (  _I  |`  B ) )
Assertion
Ref Expression
fcof1od  |-  ( ph  ->  F : A -1-1-onto-> B )

Proof of Theorem fcof1od
StepHypRef Expression
1 fcof1od.f . . 3  |-  ( ph  ->  F : A --> B )
2 fcof1od.a . . 3  |-  ( ph  ->  ( G  o.  F
)  =  (  _I  |`  A ) )
3 fcof1 6542 . . 3  |-  ( ( F : A --> B  /\  ( G  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
41, 2, 3syl2anc 693 . 2  |-  ( ph  ->  F : A -1-1-> B
)
5 fcof1od.g . . 3  |-  ( ph  ->  G : B --> A )
6 fcof1od.b . . 3  |-  ( ph  ->  ( F  o.  G
)  =  (  _I  |`  B ) )
7 fcofo 6543 . . 3  |-  ( ( F : A --> B  /\  G : B --> A  /\  ( F  o.  G
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
81, 5, 6, 7syl3anc 1326 . 2  |-  ( ph  ->  F : A -onto-> B
)
9 df-f1o 5895 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
104, 8, 9sylanbrc 698 1  |-  ( ph  ->  F : A -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    _I cid 5023    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  2fcoidinvd  6550  fcof1o  6551  2fvidf1od  6553  catciso  16757  pmtrff1o  17883  evpmodpmf1o  19942
  Copyright terms: Public domain W3C validator