MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evpmodpmf1o Structured version   Visualization version   Unicode version

Theorem evpmodpmf1o 19942
Description: The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmodpmf1o.s  |-  S  =  ( SymGrp `  D )
evpmodpmf1o.p  |-  P  =  ( Base `  S
)
Assertion
Ref Expression
evpmodpmf1o  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) ) : (pmEven `  D
)
-1-1-onto-> ( P  \  (pmEven `  D ) ) )
Distinct variable groups:    S, f    D, f    P, f    f, F

Proof of Theorem evpmodpmf1o
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  D  e.  Fin )
2 evpmodpmf1o.s . . . . . . 7  |-  S  =  ( SymGrp `  D )
32symggrp 17820 . . . . . 6  |-  ( D  e.  Fin  ->  S  e.  Grp )
43ad2antrr 762 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  S  e.  Grp )
5 eldifi 3732 . . . . . 6  |-  ( F  e.  ( P  \ 
(pmEven `  D )
)  ->  F  e.  P )
65ad2antlr 763 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  F  e.  P )
7 evpmodpmf1o.p . . . . . . . 8  |-  P  =  ( Base `  S
)
82, 7evpmss 19932 . . . . . . 7  |-  (pmEven `  D )  C_  P
98sseli 3599 . . . . . 6  |-  ( f  e.  (pmEven `  D
)  ->  f  e.  P )
109adantl 482 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  f  e.  P )
11 eqid 2622 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
127, 11grpcl 17430 . . . . 5  |-  ( ( S  e.  Grp  /\  F  e.  P  /\  f  e.  P )  ->  ( F ( +g  `  S ) f )  e.  P )
134, 6, 10, 12syl3anc 1326 . . . 4  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  ( F ( +g  `  S
) f )  e.  P )
14 eqid 2622 . . . . . . . 8  |-  (pmSgn `  D )  =  (pmSgn `  D )
15 eqid 2622 . . . . . . . 8  |-  ( (mulGrp ` fld )s  { 1 ,  -u
1 } )  =  ( (mulGrp ` fld )s  { 1 ,  -u
1 } )
162, 14, 15psgnghm2 19927 . . . . . . 7  |-  ( D  e.  Fin  ->  (pmSgn `  D )  e.  ( S  GrpHom  ( (mulGrp ` fld )s  {
1 ,  -u 1 } ) ) )
1716ad2antrr 762 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (pmSgn `  D )  e.  ( S  GrpHom  ( (mulGrp ` fld )s  {
1 ,  -u 1 } ) ) )
18 prex 4909 . . . . . . . 8  |-  { 1 ,  -u 1 }  e.  _V
19 eqid 2622 . . . . . . . . . 10  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
20 cnfldmul 19752 . . . . . . . . . 10  |-  x.  =  ( .r ` fld )
2119, 20mgpplusg 18493 . . . . . . . . 9  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
2215, 21ressplusg 15993 . . . . . . . 8  |-  ( { 1 ,  -u 1 }  e.  _V  ->  x.  =  ( +g  `  (
(mulGrp ` fld )s  { 1 ,  -u
1 } ) ) )
2318, 22ax-mp 5 . . . . . . 7  |-  x.  =  ( +g  `  ( (mulGrp ` fld )s  { 1 ,  -u
1 } ) )
247, 11, 23ghmlin 17665 . . . . . 6  |-  ( ( (pmSgn `  D )  e.  ( S  GrpHom  ( (mulGrp ` fld )s  { 1 ,  -u
1 } ) )  /\  F  e.  P  /\  f  e.  P
)  ->  ( (pmSgn `  D ) `  ( F ( +g  `  S
) f ) )  =  ( ( (pmSgn `  D ) `  F
)  x.  ( (pmSgn `  D ) `  f
) ) )
2517, 6, 10, 24syl3anc 1326 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
(pmSgn `  D ) `  ( F ( +g  `  S ) f ) )  =  ( ( (pmSgn `  D ) `  F )  x.  (
(pmSgn `  D ) `  f ) ) )
262, 7, 14psgnodpm 19934 . . . . . . . 8  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  F )  =  -u
1 )
2726adantr 481 . . . . . . 7  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
(pmSgn `  D ) `  F )  =  -u
1 )
282, 7, 14psgnevpm 19935 . . . . . . . 8  |-  ( ( D  e.  Fin  /\  f  e.  (pmEven `  D
) )  ->  (
(pmSgn `  D ) `  f )  =  1 )
2928adantlr 751 . . . . . . 7  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
(pmSgn `  D ) `  f )  =  1 )
3027, 29oveq12d 6668 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( (pmSgn `  D
) `  F )  x.  ( (pmSgn `  D
) `  f )
)  =  ( -u
1  x.  1 ) )
31 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
3231mulm1i 10475 . . . . . 6  |-  ( -u
1  x.  1 )  =  -u 1
3330, 32syl6eq 2672 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( (pmSgn `  D
) `  F )  x.  ( (pmSgn `  D
) `  f )
)  =  -u 1
)
3425, 33eqtrd 2656 . . . 4  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
(pmSgn `  D ) `  ( F ( +g  `  S ) f ) )  =  -u 1
)
352, 7, 14psgnodpmr 19936 . . . 4  |-  ( ( D  e.  Fin  /\  ( F ( +g  `  S
) f )  e.  P  /\  ( (pmSgn `  D ) `  ( F ( +g  `  S
) f ) )  =  -u 1 )  -> 
( F ( +g  `  S ) f )  e.  ( P  \ 
(pmEven `  D )
) )
361, 13, 34, 35syl3anc 1326 . . 3  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  ( F ( +g  `  S
) f )  e.  ( P  \  (pmEven `  D ) ) )
37 eqid 2622 . . 3  |-  ( f  e.  (pmEven `  D
)  |->  ( F ( +g  `  S ) f ) )  =  ( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) )
3836, 37fmptd 6385 . 2  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) ) : (pmEven `  D
) --> ( P  \ 
(pmEven `  D )
) )
393ad2antrr 762 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  S  e.  Grp )
40 eqid 2622 . . . . . . . 8  |-  ( invg `  S )  =  ( invg `  S )
417, 40grpinvcl 17467 . . . . . . 7  |-  ( ( S  e.  Grp  /\  F  e.  P )  ->  ( ( invg `  S ) `  F
)  e.  P )
423, 5, 41syl2an 494 . . . . . 6  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( invg `  S ) `  F
)  e.  P )
4342adantr 481 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( invg `  S ) `  F
)  e.  P )
44 eldifi 3732 . . . . . 6  |-  ( g  e.  ( P  \ 
(pmEven `  D )
)  ->  g  e.  P )
4544adantl 482 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  g  e.  P )
467, 11grpcl 17430 . . . . 5  |-  ( ( S  e.  Grp  /\  ( ( invg `  S ) `  F
)  e.  P  /\  g  e.  P )  ->  ( ( ( invg `  S ) `
 F ) ( +g  `  S ) g )  e.  P
)
4739, 43, 45, 46syl3anc 1326 . . . 4  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( ( invg `  S ) `  F
) ( +g  `  S
) g )  e.  P )
4816ad2antrr 762 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (pmSgn `  D )  e.  ( S  GrpHom  ( (mulGrp ` fld )s  {
1 ,  -u 1 } ) ) )
497, 11, 23ghmlin 17665 . . . . . 6  |-  ( ( (pmSgn `  D )  e.  ( S  GrpHom  ( (mulGrp ` fld )s  { 1 ,  -u
1 } ) )  /\  ( ( invg `  S ) `
 F )  e.  P  /\  g  e.  P )  ->  (
(pmSgn `  D ) `  ( ( ( invg `  S ) `
 F ) ( +g  `  S ) g ) )  =  ( ( (pmSgn `  D ) `  (
( invg `  S ) `  F
) )  x.  (
(pmSgn `  D ) `  g ) ) )
5048, 43, 45, 49syl3anc 1326 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  ( ( ( invg `  S ) `
 F ) ( +g  `  S ) g ) )  =  ( ( (pmSgn `  D ) `  (
( invg `  S ) `  F
) )  x.  (
(pmSgn `  D ) `  g ) ) )
512, 7, 40symginv 17822 . . . . . . . . 9  |-  ( F  e.  P  ->  (
( invg `  S ) `  F
)  =  `' F
)
525, 51syl 17 . . . . . . . 8  |-  ( F  e.  ( P  \ 
(pmEven `  D )
)  ->  ( ( invg `  S ) `
 F )  =  `' F )
5352ad2antlr 763 . . . . . . 7  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( invg `  S ) `  F
)  =  `' F
)
5453fveq2d 6195 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  ( ( invg `  S ) `  F
) )  =  ( (pmSgn `  D ) `  `' F ) )
552, 7, 14psgnodpm 19934 . . . . . . 7  |-  ( ( D  e.  Fin  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  g )  =  -u
1 )
5655adantlr 751 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  g )  =  -u
1 )
5754, 56oveq12d 6668 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( (pmSgn `  D
) `  ( ( invg `  S ) `
 F ) )  x.  ( (pmSgn `  D ) `  g
) )  =  ( ( (pmSgn `  D
) `  `' F
)  x.  -u 1
) )
58 simpll 790 . . . . . . . . 9  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  D  e.  Fin )
595ad2antlr 763 . . . . . . . . 9  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  F  e.  P )
602, 14, 7psgninv 19928 . . . . . . . . 9  |-  ( ( D  e.  Fin  /\  F  e.  P )  ->  ( (pmSgn `  D
) `  `' F
)  =  ( (pmSgn `  D ) `  F
) )
6158, 59, 60syl2anc 693 . . . . . . . 8  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  `' F )  =  ( (pmSgn `  D ) `  F ) )
6226adantr 481 . . . . . . . 8  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  F )  =  -u
1 )
6361, 62eqtrd 2656 . . . . . . 7  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  `' F )  =  -u
1 )
6463oveq1d 6665 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( (pmSgn `  D
) `  `' F
)  x.  -u 1
)  =  ( -u
1  x.  -u 1
) )
65 neg1mulneg1e1 11245 . . . . . 6  |-  ( -u
1  x.  -u 1
)  =  1
6664, 65syl6eq 2672 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( (pmSgn `  D
) `  `' F
)  x.  -u 1
)  =  1 )
6750, 57, 663eqtrd 2660 . . . 4  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
(pmSgn `  D ) `  ( ( ( invg `  S ) `
 F ) ( +g  `  S ) g ) )  =  1 )
682, 7, 14psgnevpmb 19933 . . . . 5  |-  ( D  e.  Fin  ->  (
( ( ( invg `  S ) `
 F ) ( +g  `  S ) g )  e.  (pmEven `  D )  <->  ( (
( ( invg `  S ) `  F
) ( +g  `  S
) g )  e.  P  /\  ( (pmSgn `  D ) `  (
( ( invg `  S ) `  F
) ( +g  `  S
) g ) )  =  1 ) ) )
6968ad2antrr 762 . . . 4  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( ( ( invg `  S ) `
 F ) ( +g  `  S ) g )  e.  (pmEven `  D )  <->  ( (
( ( invg `  S ) `  F
) ( +g  `  S
) g )  e.  P  /\  ( (pmSgn `  D ) `  (
( ( invg `  S ) `  F
) ( +g  `  S
) g ) )  =  1 ) ) )
7047, 67, 69mpbir2and 957 . . 3  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( ( invg `  S ) `  F
) ( +g  `  S
) g )  e.  (pmEven `  D )
)
71 eqid 2622 . . 3  |-  ( g  e.  ( P  \ 
(pmEven `  D )
)  |->  ( ( ( invg `  S
) `  F )
( +g  `  S ) g ) )  =  ( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) )
7270, 71fmptd 6385 . 2  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
g  e.  ( P 
\  (pmEven `  D
) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) : ( P  \ 
(pmEven `  D )
) --> (pmEven `  D )
)
73 eqidd 2623 . . . . 5  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) )  =  ( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S ) f ) ) )
74 eqidd 2623 . . . . 5  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
g  e.  ( P 
\  (pmEven `  D
) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) )  =  ( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) )
75 oveq2 6658 . . . . 5  |-  ( g  =  ( F ( +g  `  S ) f )  ->  (
( ( invg `  S ) `  F
) ( +g  `  S
) g )  =  ( ( ( invg `  S ) `
 F ) ( +g  `  S ) ( F ( +g  `  S ) f ) ) )
7636, 73, 74, 75fmptco 6396 . . . 4  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) )  o.  ( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S ) f ) ) )  =  ( f  e.  (pmEven `  D )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) ( F ( +g  `  S ) f ) ) ) )
77 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  S )  =  ( 0g `  S
)
787, 11, 77, 40grplinv 17468 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  F  e.  P )  ->  ( ( ( invg `  S ) `
 F ) ( +g  `  S ) F )  =  ( 0g `  S ) )
794, 6, 78syl2anc 693 . . . . . . 7  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( ( invg `  S ) `  F
) ( +g  `  S
) F )  =  ( 0g `  S
) )
8079oveq1d 6665 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( ( ( invg `  S ) `
 F ) ( +g  `  S ) F ) ( +g  `  S ) f )  =  ( ( 0g
`  S ) ( +g  `  S ) f ) )
8142adantr 481 . . . . . . 7  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( invg `  S ) `  F
)  e.  P )
827, 11grpass 17431 . . . . . . 7  |-  ( ( S  e.  Grp  /\  ( ( ( invg `  S ) `
 F )  e.  P  /\  F  e.  P  /\  f  e.  P ) )  -> 
( ( ( ( invg `  S
) `  F )
( +g  `  S ) F ) ( +g  `  S ) f )  =  ( ( ( invg `  S
) `  F )
( +g  `  S ) ( F ( +g  `  S ) f ) ) )
834, 81, 6, 10, 82syl13anc 1328 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( ( ( invg `  S ) `
 F ) ( +g  `  S ) F ) ( +g  `  S ) f )  =  ( ( ( invg `  S
) `  F )
( +g  `  S ) ( F ( +g  `  S ) f ) ) )
847, 11, 77grplid 17452 . . . . . . 7  |-  ( ( S  e.  Grp  /\  f  e.  P )  ->  ( ( 0g `  S ) ( +g  `  S ) f )  =  f )
854, 10, 84syl2anc 693 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( 0g `  S
) ( +g  `  S
) f )  =  f )
8680, 83, 853eqtr3d 2664 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  f  e.  (pmEven `  D
) )  ->  (
( ( invg `  S ) `  F
) ( +g  `  S
) ( F ( +g  `  S ) f ) )  =  f )
8786mpteq2dva 4744 . . . 4  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
f  e.  (pmEven `  D )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) ( F ( +g  `  S ) f ) ) )  =  ( f  e.  (pmEven `  D )  |->  f ) )
8876, 87eqtrd 2656 . . 3  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) )  o.  ( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S ) f ) ) )  =  ( f  e.  (pmEven `  D )  |->  f ) )
89 mptresid 5456 . . 3  |-  ( f  e.  (pmEven `  D
)  |->  f )  =  (  _I  |`  (pmEven `  D ) )
9088, 89syl6eq 2672 . 2  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) )  o.  ( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S ) f ) ) )  =  (  _I  |`  (pmEven `  D
) ) )
91 oveq2 6658 . . . . 5  |-  ( f  =  ( ( ( invg `  S
) `  F )
( +g  `  S ) g )  ->  ( F ( +g  `  S
) f )  =  ( F ( +g  `  S ) ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) )
9270, 74, 73, 91fmptco 6396 . . . 4  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) )  o.  ( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) )  =  ( g  e.  ( P  \ 
(pmEven `  D )
)  |->  ( F ( +g  `  S ) ( ( ( invg `  S ) `
 F ) ( +g  `  S ) g ) ) ) )
937, 11, 77, 40grprinv 17469 . . . . . . . . 9  |-  ( ( S  e.  Grp  /\  F  e.  P )  ->  ( F ( +g  `  S ) ( ( invg `  S
) `  F )
)  =  ( 0g
`  S ) )
943, 5, 93syl2an 494 . . . . . . . 8  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  ( F ( +g  `  S
) ( ( invg `  S ) `
 F ) )  =  ( 0g `  S ) )
9594oveq1d 6665 . . . . . . 7  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( F ( +g  `  S ) ( ( invg `  S
) `  F )
) ( +g  `  S
) g )  =  ( ( 0g `  S ) ( +g  `  S ) g ) )
9695adantr 481 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( F ( +g  `  S ) ( ( invg `  S
) `  F )
) ( +g  `  S
) g )  =  ( ( 0g `  S ) ( +g  `  S ) g ) )
977, 11grpass 17431 . . . . . . 7  |-  ( ( S  e.  Grp  /\  ( F  e.  P  /\  ( ( invg `  S ) `  F
)  e.  P  /\  g  e.  P )
)  ->  ( ( F ( +g  `  S
) ( ( invg `  S ) `
 F ) ) ( +g  `  S
) g )  =  ( F ( +g  `  S ) ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) )
9839, 59, 43, 45, 97syl13anc 1328 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( F ( +g  `  S ) ( ( invg `  S
) `  F )
) ( +g  `  S
) g )  =  ( F ( +g  `  S ) ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) )
997, 11, 77grplid 17452 . . . . . . 7  |-  ( ( S  e.  Grp  /\  g  e.  P )  ->  ( ( 0g `  S ) ( +g  `  S ) g )  =  g )
10039, 45, 99syl2anc 693 . . . . . 6  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  (
( 0g `  S
) ( +g  `  S
) g )  =  g )
10196, 98, 1003eqtr3d 2664 . . . . 5  |-  ( ( ( D  e.  Fin  /\  F  e.  ( P 
\  (pmEven `  D
) ) )  /\  g  e.  ( P  \  (pmEven `  D )
) )  ->  ( F ( +g  `  S
) ( ( ( invg `  S
) `  F )
( +g  `  S ) g ) )  =  g )
102101mpteq2dva 4744 . . . 4  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
g  e.  ( P 
\  (pmEven `  D
) )  |->  ( F ( +g  `  S
) ( ( ( invg `  S
) `  F )
( +g  `  S ) g ) ) )  =  ( g  e.  ( P  \  (pmEven `  D ) )  |->  g ) )
10392, 102eqtrd 2656 . . 3  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) )  o.  ( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) )  =  ( g  e.  ( P  \ 
(pmEven `  D )
)  |->  g ) )
104 mptresid 5456 . . 3  |-  ( g  e.  ( P  \ 
(pmEven `  D )
)  |->  g )  =  (  _I  |`  ( P  \  (pmEven `  D
) ) )
105103, 104syl6eq 2672 . 2  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
( f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) )  o.  ( g  e.  ( P  \  (pmEven `  D ) )  |->  ( ( ( invg `  S ) `  F
) ( +g  `  S
) g ) ) )  =  (  _I  |`  ( P  \  (pmEven `  D ) ) ) )
10638, 72, 90, 105fcof1od 6549 1  |-  ( ( D  e.  Fin  /\  F  e.  ( P  \  (pmEven `  D )
) )  ->  (
f  e.  (pmEven `  D )  |->  ( F ( +g  `  S
) f ) ) : (pmEven `  D
)
-1-1-onto-> ( P  \  (pmEven `  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   {cpr 4179    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    x. cmul 9941   -ucneg 10267   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423    GrpHom cghm 17657   SymGrpcsymg 17797  pmSgncpsgn 17909  pmEvencevpm 17910  mulGrpcmgp 18489  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-evpm 17912  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-cnfld 19747
This theorem is referenced by:  mdetralt  20414
  Copyright terms: Public domain W3C validator