MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catciso Structured version   Visualization version   Unicode version

Theorem catciso 16757
Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c  |-  C  =  (CatCat `  U )
catciso.b  |-  B  =  ( Base `  C
)
catciso.r  |-  R  =  ( Base `  X
)
catciso.s  |-  S  =  ( Base `  Y
)
catciso.u  |-  ( ph  ->  U  e.  V )
catciso.x  |-  ( ph  ->  X  e.  B )
catciso.y  |-  ( ph  ->  Y  e.  B )
catciso.i  |-  I  =  (  Iso  `  C
)
Assertion
Ref Expression
catciso  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
( F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) ) )

Proof of Theorem catciso
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 16522 . . . . 5  |-  Rel  ( X  Func  Y )
2 catciso.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  C
)
3 eqid 2622 . . . . . . . . . . . . . 14  |-  (Inv `  C )  =  (Inv
`  C )
4 catciso.u . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  V )
5 catciso.c . . . . . . . . . . . . . . . 16  |-  C  =  (CatCat `  U )
65catccat 16754 . . . . . . . . . . . . . . 15  |-  ( U  e.  V  ->  C  e.  Cat )
74, 6syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Cat )
8 catciso.x . . . . . . . . . . . . . 14  |-  ( ph  ->  X  e.  B )
9 catciso.y . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  e.  B )
10 catciso.i . . . . . . . . . . . . . 14  |-  I  =  (  Iso  `  C
)
112, 3, 7, 8, 9, 10isoval 16425 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X I Y )  =  dom  ( X (Inv `  C ) Y ) )
1211eleq2d 2687 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
F  e.  dom  ( X (Inv `  C ) Y ) ) )
1312biimpa 501 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  dom  ( X (Inv `  C ) Y ) )
147adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  C  e.  Cat )
158adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  X  e.  B )
169adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Y  e.  B )
172, 3, 14, 15, 16invfun 16424 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Fun  ( X (Inv `  C ) Y ) )
18 funfvbrb 6330 . . . . . . . . . . . 12  |-  ( Fun  ( X (Inv `  C ) Y )  ->  ( F  e. 
dom  ( X (Inv
`  C ) Y )  <->  F ( X (Inv
`  C ) Y ) ( ( X (Inv `  C ) Y ) `  F
) ) )
1917, 18syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  dom  ( X (Inv
`  C ) Y )  <->  F ( X (Inv
`  C ) Y ) ( ( X (Inv `  C ) Y ) `  F
) ) )
2013, 19mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F ( X (Inv `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )
21 eqid 2622 . . . . . . . . . . 11  |-  (Sect `  C )  =  (Sect `  C )
222, 3, 14, 15, 16, 21isinv 16420 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Inv `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  <-> 
( F ( X (Sect `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F )  /\  (
( X (Inv `  C ) Y ) `
 F ) ( Y (Sect `  C
) X ) F ) ) )
2320, 22mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Sect `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  /\  ( ( X (Inv `  C ) Y ) `  F
) ( Y (Sect `  C ) X ) F ) )
2423simpld 475 . . . . . . . 8  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F ( X (Sect `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )
25 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  C )  =  ( Hom  `  C )
26 eqid 2622 . . . . . . . . 9  |-  (comp `  C )  =  (comp `  C )
27 eqid 2622 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
282, 25, 26, 27, 21, 14, 15, 16issect 16413 . . . . . . . 8  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Sect `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  <-> 
( F  e.  ( X ( Hom  `  C
) Y )  /\  ( ( X (Inv
`  C ) Y ) `  F )  e.  ( Y ( Hom  `  C ) X )  /\  (
( ( X (Inv
`  C ) Y ) `  F ) ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X ) ) ) )
2924, 28mpbid 222 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  ( X ( Hom  `  C ) Y )  /\  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y ( Hom  `  C
) X )  /\  ( ( ( X (Inv `  C ) Y ) `  F
) ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) )
3029simp1d 1073 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( X ( Hom  `  C
) Y ) )
315, 2, 4, 25, 8, 9catchom 16749 . . . . . . 7  |-  ( ph  ->  ( X ( Hom  `  C ) Y )  =  ( X  Func  Y ) )
3231adantr 481 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( X
( Hom  `  C ) Y )  =  ( X  Func  Y )
)
3330, 32eleqtrd 2703 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( X  Func  Y ) )
34 1st2nd 7214 . . . . 5  |-  ( ( Rel  ( X  Func  Y )  /\  F  e.  ( X  Func  Y
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
351, 33, 34sylancr 695 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
36 1st2ndbr 7217 . . . . . . 7  |-  ( ( Rel  ( X  Func  Y )  /\  F  e.  ( X  Func  Y
) )  ->  ( 1st `  F ) ( X  Func  Y )
( 2nd `  F
) )
371, 33, 36sylancr 695 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) ( X 
Func  Y ) ( 2nd `  F ) )
38 catciso.r . . . . . . . . 9  |-  R  =  ( Base `  X
)
39 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  X )  =  ( Hom  `  X )
40 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  Y )  =  ( Hom  `  Y )
4137adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  F ) ( X 
Func  Y ) ( 2nd `  F ) )
42 simprl 794 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  x  e.  R )
43 simprr 796 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  y  e.  R )
4438, 39, 40, 41, 42, 43funcf2 16528 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  Y
) ( ( 1st `  F ) `  y
) ) )
45 catciso.s . . . . . . . . . 10  |-  S  =  ( Base `  Y
)
46 relfunc 16522 . . . . . . . . . . . 12  |-  Rel  ( Y  Func  X )
4729simp2d 1074 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y ( Hom  `  C
) X ) )
485, 2, 4, 25, 9, 8catchom 16749 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y ( Hom  `  C ) X )  =  ( Y  Func  X ) )
4948adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( Y
( Hom  `  C ) X )  =  ( Y  Func  X )
)
5047, 49eleqtrd 2703 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y 
Func  X ) )
51 1st2ndbr 7217 . . . . . . . . . . . 12  |-  ( ( Rel  ( Y  Func  X )  /\  ( ( X (Inv `  C
) Y ) `  F )  e.  ( Y  Func  X )
)  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5246, 50, 51sylancr 695 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5352adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5438, 45, 41funcf1 16526 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  F ) : R --> S )
5554, 42ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  F ) `  x )  e.  S
)
5654, 43ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  F ) `  y )  e.  S
)
5745, 40, 39, 53, 55, 56funcf2 16528 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  x )
) ( Hom  `  X
) ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) ) )
5829simp3d 1075 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
594adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  U  e.  V )
605, 2, 59, 26, 15, 16, 15, 33, 50catcco 16751 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) )
61 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (idfunc `  X
)  =  (idfunc `  X
)
625, 2, 27, 61, 4, 8catcid 16753 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( Id `  C ) `  X
)  =  (idfunc `  X
) )
6362adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( Id `  C ) `  X )  =  (idfunc `  X ) )
6458, 60, 633eqtr3d 2664 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F )  o.func  F
)  =  (idfunc `  X
) )
6564adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( X (Inv `  C ) Y ) `
 F )  o.func  F
)  =  (idfunc `  X
) )
6665fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 1st `  (idfunc `  X
) ) )
6766fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  x )  =  ( ( 1st `  (idfunc `  X ) ) `  x ) )
6833adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  F  e.  ( X  Func  Y ) )
6950adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y 
Func  X ) )
7038, 68, 69, 42cofu1 16544 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  x )  =  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 x ) ) )
715, 2, 4catcbas 16747 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
72 inss2 3834 . . . . . . . . . . . . . . . 16  |-  ( U  i^i  Cat )  C_  Cat
7371, 72syl6eqss 3655 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  C_  Cat )
7473, 8sseldd 3604 . . . . . . . . . . . . . 14  |-  ( ph  ->  X  e.  Cat )
7574ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  X  e.  Cat )
7661, 38, 75, 42idfu1 16540 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  (idfunc `  X ) ) `  x )  =  x )
7767, 70, 763eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) `  (
( 1st `  F
) `  x )
)  =  x )
7866fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  y )  =  ( ( 1st `  (idfunc `  X ) ) `  y ) )
7938, 68, 69, 43cofu1 16544 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  y )  =  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) )
8061, 38, 75, 43idfu1 16540 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  (idfunc `  X ) ) `  y )  =  y )
8178, 79, 803eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) `  (
( 1st `  F
) `  y )
)  =  y )
8277, 81oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( Hom  `  X ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  =  ( x ( Hom  `  X
) y ) )
8382feq3d 6032 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  x )
) ( Hom  `  X
) ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) )  <->  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x ( Hom  `  X )
y ) ) )
8457, 83mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x ( Hom  `  X )
y ) )
8565fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 2nd `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 2nd `  (idfunc `  X
) ) )
8685oveqd 6667 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (
( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) ) y )  =  ( x ( 2nd `  (idfunc `  X
) ) y ) )
8738, 68, 69, 42, 43cofu2nd 16545 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (
( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) ) y )  =  ( ( ( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) )
8861, 38, 75, 39, 42, 43idfu2nd 16537 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (idfunc `  X
) ) y )  =  (  _I  |`  (
x ( Hom  `  X
) y ) ) )
8986, 87, 883eqtr3d 2664 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) )  =  (  _I  |`  (
x ( Hom  `  X
) y ) ) )
9023simprd 479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
) ( Y (Sect `  C ) X ) F )
912, 25, 26, 27, 21, 14, 16, 15issect 16413 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) ( Y (Sect `  C
) X ) F  <-> 
( ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y ( Hom  `  C
) X )  /\  F  e.  ( X
( Hom  `  C ) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) ( ( X (Inv `  C ) Y ) `
 F ) )  =  ( ( Id
`  C ) `  Y ) ) ) )
9290, 91mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F )  e.  ( Y ( Hom  `  C ) X )  /\  F  e.  ( X ( Hom  `  C
) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) ( ( X (Inv `  C ) Y ) `
 F ) )  =  ( ( Id
`  C ) `  Y ) ) )
9392simp3d 1075 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( <. Y ,  X >. (comp `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )  =  ( ( Id `  C ) `  Y
) )
945, 2, 59, 26, 16, 15, 16, 50, 33catcco 16751 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( <. Y ,  X >. (comp `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )  =  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )
95 eqid 2622 . . . . . . . . . . . . . . 15  |-  (idfunc `  Y
)  =  (idfunc `  Y
)
965, 2, 27, 95, 4, 9catcid 16753 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( Id `  C ) `  Y
)  =  (idfunc `  Y
) )
9796adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( Id `  C ) `  Y )  =  (idfunc `  Y ) )
9893, 94, 973eqtr3d 2664 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) )  =  (idfunc `  Y
) )
9998adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) )  =  (idfunc `  Y
) )
10099fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 2nd `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( 2nd `  (idfunc `  Y
) ) )
101100oveqd 6667 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( ( 1st `  F ) `
 x ) ( 2nd `  (idfunc `  Y
) ) ( ( 1st `  F ) `
 y ) ) )
10245, 69, 68, 55, 56cofu2nd 16545 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( ( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  o.  (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
10377, 81oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  =  ( x ( 2nd `  F
) y ) )
104103coeq1d 5283 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  o.  (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  ( ( x ( 2nd `  F ) y )  o.  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) ) )
105102, 104eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
10673ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  B  C_  Cat )
1079ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  Y  e.  B )
108106, 107sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  Y  e.  Cat )
10995, 45, 108, 40, 55, 56idfu2nd 16537 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (idfunc `  Y
) ) ( ( 1st `  F ) `
 y ) )  =  (  _I  |`  (
( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
110101, 105, 1093eqtr3d 2664 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  (  _I  |`  ( (
( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
11144, 84, 89, 110fcof1od 6549 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
112111ralrimivva 2971 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  A. x  e.  R  A. y  e.  R  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
11338, 39, 40isffth2 16576 . . . . . 6  |-  ( ( 1st `  F ) ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) ( 2nd `  F )  <->  ( ( 1st `  F ) ( X  Func  Y )
( 2nd `  F
)  /\  A. x  e.  R  A. y  e.  R  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
11437, 112, 113sylanbrc 698 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) ( ( X Full  Y )  i^i  ( X Faith  Y ) ) ( 2nd `  F
) )
115 df-br 4654 . . . . 5  |-  ( ( 1st `  F ) ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) ( 2nd `  F )  <->  <. ( 1st `  F ) ,  ( 2nd `  F )
>.  e.  ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) )
116114, 115sylib 208 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  <. ( 1st `  F ) ,  ( 2nd `  F )
>.  e.  ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) )
11735, 116eqeltrd 2701 . . 3  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) )
11838, 45, 37funcf1 16526 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) : R --> S )
11945, 38, 52funcf1 16526 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) : S --> R )
12064fveq2d 6195 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 1st `  (idfunc `  X
) ) )
12138, 33, 50cofu1st 16543 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) )  o.  ( 1st `  F
) ) )
12274adantr 481 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  X  e.  Cat )
12361, 38, 122idfu1st 16539 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  (idfunc `  X ) )  =  (  _I  |`  R ) )
124120, 121, 1233eqtr3d 2664 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) )  o.  ( 1st `  F ) )  =  (  _I  |`  R ) )
12598fveq2d 6195 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( 1st `  (idfunc `  Y
) ) )
12645, 50, 33cofu1st 16543 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( ( 1st `  F
)  o.  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ) )
12773, 9sseldd 3604 . . . . . . 7  |-  ( ph  ->  Y  e.  Cat )
128127adantr 481 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Y  e.  Cat )
12995, 45, 128idfu1st 16539 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  (idfunc `  Y ) )  =  (  _I  |`  S ) )
130125, 126, 1293eqtr3d 2664 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  F )  o.  ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) )  =  (  _I  |`  S ) )
131118, 119, 124, 130fcof1od 6549 . . 3  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) : R -1-1-onto-> S
)
132117, 131jca 554 . 2  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )
1337adantr 481 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  C  e.  Cat )
1348adantr 481 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  X  e.  B )
1359adantr 481 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  Y  e.  B )
136 inss1 3833 . . . . . . 7  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X Full  Y )
137 fullfunc 16566 . . . . . . 7  |-  ( X Full 
Y )  C_  ( X  Func  Y )
138136, 137sstri 3612 . . . . . 6  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X  Func  Y )
139 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y ) ) )
140138, 139sseldi 3601 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( X  Func  Y ) )
1411, 140, 34sylancr 695 . . . 4  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F )
>. )
1424adantr 481 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  U  e.  V )
143 eqid 2622 . . . . 5  |-  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F ) `  x
) ( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) )  =  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F ) `  x
) ( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) )
144141, 139eqeltrrd 2702 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  <. ( 1st `  F
) ,  ( 2nd `  F ) >.  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) ) )
145144, 115sylibr 224 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  -> 
( 1st `  F
) ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) ( 2nd `  F ) )
146 simprr 796 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  -> 
( 1st `  F
) : R -1-1-onto-> S )
1475, 2, 38, 45, 142, 134, 135, 3, 143, 145, 146catcisolem 16756 . . . 4  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  <. ( 1st `  F
) ,  ( 2nd `  F ) >. ( X (Inv `  C ) Y ) <. `' ( 1st `  F ) ,  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F
) `  x )
( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) ) >. )
148141, 147eqbrtrd 4675 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F ( X (Inv
`  C ) Y ) <. `' ( 1st `  F ) ,  ( x  e.  S , 
y  e.  S  |->  `' ( ( `' ( 1st `  F ) `
 x ) ( 2nd `  F ) ( `' ( 1st `  F ) `  y
) ) ) >.
)
1492, 3, 133, 134, 135, 10, 148inviso1 16426 . 2  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( X I Y ) )
150132, 149impbida 877 1  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
( F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653    _I cid 5023   `'ccnv 5113   dom cdm 5114    |` cres 5116    o. ccom 5118   Rel wrel 5119   Fun wfun 5882   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404  Invcinv 16405    Iso ciso 16406    Func cfunc 16514  idfunccidfu 16515    o.func ccofu 16516   Full cful 16562   Faith cfth 16563  CatCatccatc 16744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409  df-func 16518  df-idfu 16519  df-cofu 16520  df-full 16564  df-fth 16565  df-catc 16745
This theorem is referenced by:  yoniso  16925
  Copyright terms: Public domain W3C validator