MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdmd Structured version   Visualization version   Unicode version

Theorem ffdmd 6063
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ffdmd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
ffdmd  |-  ( ph  ->  F : dom  F --> B )

Proof of Theorem ffdmd
StepHypRef Expression
1 ffdmd.1 . . 3  |-  ( ph  ->  F : A --> B )
2 ffdm 6062 . . 3  |-  ( F : A --> B  -> 
( F : dom  F --> B  /\  dom  F  C_  A ) )
31, 2syl 17 . 2  |-  ( ph  ->  ( F : dom  F --> B  /\  dom  F  C_  A ) )
43simpld 475 1  |-  ( ph  ->  F : dom  F --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    C_ wss 3574   dom cdm 5114   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-fn 5891  df-f 5892
This theorem is referenced by:  upgrres1  26205  umgr2v2e  26421  pliguhgr  27338  xlimmnfvlem1  40058  xlimpnfvlem1  40062  issmfd  40944  issmfdf  40946  cnfsmf  40949  issmfled  40966  issmfgtd  40969  smfsuplem1  41017
  Copyright terms: Public domain W3C validator