Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfdf Structured version   Visualization version   Unicode version

Theorem issmfdf 40946
Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra  S". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfdf.x  |-  F/_ x F
issmfdf.a  |-  F/ a
ph
issmfdf.s  |-  ( ph  ->  S  e. SAlg )
issmfdf.d  |-  ( ph  ->  D  C_  U. S )
issmfdf.f  |-  ( ph  ->  F : D --> RR )
issmfdf.p  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) )
Assertion
Ref Expression
issmfdf  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
Distinct variable groups:    x, D    F, a    S, a    x, a
Allowed substitution hints:    ph( x, a)    D( a)    S( x)    F( x)

Proof of Theorem issmfdf
StepHypRef Expression
1 issmfdf.f . . . . 5  |-  ( ph  ->  F : D --> RR )
21fdmd 39420 . . . 4  |-  ( ph  ->  dom  F  =  D )
3 issmfdf.d . . . 4  |-  ( ph  ->  D  C_  U. S )
42, 3eqsstrd 3639 . . 3  |-  ( ph  ->  dom  F  C_  U. S
)
51ffdmd 6063 . . 3  |-  ( ph  ->  F : dom  F --> RR )
6 issmfdf.a . . . 4  |-  F/ a
ph
7 issmfdf.p . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) )
8 issmfdf.x . . . . . . . . . . 11  |-  F/_ x F
98nfdm 5367 . . . . . . . . . 10  |-  F/_ x dom  F
10 nfcv 2764 . . . . . . . . . 10  |-  F/_ x D
119, 10rabeqf 3190 . . . . . . . . 9  |-  ( dom 
F  =  D  ->  { x  e.  dom  F  |  ( F `  x )  <  a }  =  { x  e.  D  |  ( F `  x )  <  a } )
122, 11syl 17 . . . . . . . 8  |-  ( ph  ->  { x  e.  dom  F  |  ( F `  x )  <  a }  =  { x  e.  D  |  ( F `  x )  <  a } )
132oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( St  dom  F )  =  ( St  D ) )
1412, 13eleq12d 2695 . . . . . . 7  |-  ( ph  ->  ( { x  e. 
dom  F  |  ( F `  x )  <  a }  e.  ( St 
dom  F )  <->  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) ) )
1514adantr 481 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( { x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( St  dom  F )  <->  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D
) ) )
167, 15mpbird 247 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( St  dom  F ) )
1716ex 450 . . . 4  |-  ( ph  ->  ( a  e.  RR  ->  { x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( St  dom  F ) ) )
186, 17ralrimi 2957 . . 3  |-  ( ph  ->  A. a  e.  RR  { x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( St  dom  F ) )
194, 5, 183jca 1242 . 2  |-  ( ph  ->  ( dom  F  C_  U. S  /\  F : dom  F --> RR  /\  A. a  e.  RR  { x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( St  dom  F ) ) )
20 issmfdf.s . . 3  |-  ( ph  ->  S  e. SAlg )
21 eqid 2622 . . 3  |-  dom  F  =  dom  F
228, 20, 21issmff 40943 . 2  |-  ( ph  ->  ( F  e.  (SMblFn `  S )  <->  ( dom  F 
C_  U. S  /\  F : dom  F --> RR  /\  A. a  e.  RR  {
x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( St  dom  F ) ) ) )
2319, 22mpbird 247 1  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   {crab 2916    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-smblfn 40910
This theorem is referenced by:  issmfdmpt  40957  smfconst  40958
  Copyright terms: Public domain W3C validator