MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgval Structured version   Visualization version   Unicode version

Theorem fgval 21674
Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgval  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  =  {
x  e.  ~P X  |  ( F  i^i  ~P x )  =/=  (/) } )
Distinct variable groups:    x, F    x, X

Proof of Theorem fgval
Dummy variables  v 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fg 19744 . . 3  |-  filGen  =  ( v  e.  _V , 
f  e.  ( fBas `  v )  |->  { x  e.  ~P v  |  ( f  i^i  ~P x
)  =/=  (/) } )
21a1i 11 . 2  |-  ( F  e.  ( fBas `  X
)  ->  filGen  =  ( v  e.  _V , 
f  e.  ( fBas `  v )  |->  { x  e.  ~P v  |  ( f  i^i  ~P x
)  =/=  (/) } ) )
3 pweq 4161 . . . . 5  |-  ( v  =  X  ->  ~P v  =  ~P X
)
43adantr 481 . . . 4  |-  ( ( v  =  X  /\  f  =  F )  ->  ~P v  =  ~P X )
5 ineq1 3807 . . . . . 6  |-  ( f  =  F  ->  (
f  i^i  ~P x
)  =  ( F  i^i  ~P x ) )
65neeq1d 2853 . . . . 5  |-  ( f  =  F  ->  (
( f  i^i  ~P x )  =/=  (/)  <->  ( F  i^i  ~P x )  =/=  (/) ) )
76adantl 482 . . . 4  |-  ( ( v  =  X  /\  f  =  F )  ->  ( ( f  i^i 
~P x )  =/=  (/) 
<->  ( F  i^i  ~P x )  =/=  (/) ) )
84, 7rabeqbidv 3195 . . 3  |-  ( ( v  =  X  /\  f  =  F )  ->  { x  e.  ~P v  |  ( f  i^i  ~P x )  =/=  (/) }  =  { x  e.  ~P X  |  ( F  i^i  ~P x
)  =/=  (/) } )
98adantl 482 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  (
v  =  X  /\  f  =  F )
)  ->  { x  e.  ~P v  |  ( f  i^i  ~P x
)  =/=  (/) }  =  { x  e.  ~P X  |  ( F  i^i  ~P x )  =/=  (/) } )
10 fveq2 6191 . . 3  |-  ( v  =  X  ->  ( fBas `  v )  =  ( fBas `  X
) )
1110adantl 482 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  v  =  X )  ->  ( fBas `  v )  =  ( fBas `  X
) )
12 elfvex 6221 . 2  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  _V )
13 id 22 . 2  |-  ( F  e.  ( fBas `  X
)  ->  F  e.  ( fBas `  X )
)
14 elfvdm 6220 . . 3  |-  ( F  e.  ( fBas `  X
)  ->  X  e.  dom  fBas )
15 pwexg 4850 . . 3  |-  ( X  e.  dom  fBas  ->  ~P X  e.  _V )
16 rabexg 4812 . . 3  |-  ( ~P X  e.  _V  ->  { x  e.  ~P X  |  ( F  i^i  ~P x )  =/=  (/) }  e.  _V )
1714, 15, 163syl 18 . 2  |-  ( F  e.  ( fBas `  X
)  ->  { x  e.  ~P X  |  ( F  i^i  ~P x
)  =/=  (/) }  e.  _V )
182, 9, 11, 12, 13, 17ovmpt2dx 6787 1  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  =  {
x  e.  ~P X  |  ( F  i^i  ~P x )  =/=  (/) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   dom cdm 5114   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   fBascfbas 19734   filGencfg 19735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fg 19744
This theorem is referenced by:  elfg  21675  restmetu  22375  neifg  32366
  Copyright terms: Public domain W3C validator