| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fival | Structured version Visualization version Unicode version | ||
| Description: The set of all the finite
intersections of the elements of |
| Ref | Expression |
|---|---|
| fival |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | simpr 477 |
. . . . . . 7
| |
| 3 | inss1 3833 |
. . . . . . . . . 10
| |
| 4 | 3 | sseli 3599 |
. . . . . . . . 9
|
| 5 | 4 | elpwid 4170 |
. . . . . . . 8
|
| 6 | eqvisset 3211 |
. . . . . . . . 9
| |
| 7 | intex 4820 |
. . . . . . . . 9
| |
| 8 | 6, 7 | sylibr 224 |
. . . . . . . 8
|
| 9 | intssuni2 4502 |
. . . . . . . 8
| |
| 10 | 5, 8, 9 | syl2an 494 |
. . . . . . 7
|
| 11 | 2, 10 | eqsstrd 3639 |
. . . . . 6
|
| 12 | selpw 4165 |
. . . . . 6
| |
| 13 | 11, 12 | sylibr 224 |
. . . . 5
|
| 14 | 13 | rexlimiva 3028 |
. . . 4
|
| 15 | 14 | abssi 3677 |
. . 3
|
| 16 | uniexg 6955 |
. . . 4
| |
| 17 | pwexg 4850 |
. . . 4
| |
| 18 | 16, 17 | syl 17 |
. . 3
|
| 19 | ssexg 4804 |
. . 3
| |
| 20 | 15, 18, 19 | sylancr 695 |
. 2
|
| 21 | pweq 4161 |
. . . . . 6
| |
| 22 | 21 | ineq1d 3813 |
. . . . 5
|
| 23 | 22 | rexeqdv 3145 |
. . . 4
|
| 24 | 23 | abbidv 2741 |
. . 3
|
| 25 | df-fi 8317 |
. . 3
| |
| 26 | 24, 25 | fvmptg 6280 |
. 2
|
| 27 | 1, 20, 26 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-fi 8317 |
| This theorem is referenced by: elfi 8319 fi0 8326 |
| Copyright terms: Public domain | W3C validator |