MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fival Structured version   Visualization version   Unicode version

Theorem fival 8318
Description: The set of all the finite intersections of the elements of  A. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Distinct variable groups:    x, y, A    x, V
Allowed substitution hint:    V( y)

Proof of Theorem fival
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 simpr 477 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  =  |^| x )
3 inss1 3833 . . . . . . . . . 10  |-  ( ~P A  i^i  Fin )  C_ 
~P A
43sseli 3599 . . . . . . . . 9  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
54elpwid 4170 . . . . . . . 8  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  C_  A )
6 eqvisset 3211 . . . . . . . . 9  |-  ( y  =  |^| x  ->  |^| x  e.  _V )
7 intex 4820 . . . . . . . . 9  |-  ( x  =/=  (/)  <->  |^| x  e.  _V )
86, 7sylibr 224 . . . . . . . 8  |-  ( y  =  |^| x  ->  x  =/=  (/) )
9 intssuni2 4502 . . . . . . . 8  |-  ( ( x  C_  A  /\  x  =/=  (/) )  ->  |^| x  C_ 
U. A )
105, 8, 9syl2an 494 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  |^| x  C_ 
U. A )
112, 10eqsstrd 3639 . . . . . 6  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  C_ 
U. A )
12 selpw 4165 . . . . . 6  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
1311, 12sylibr 224 . . . . 5  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  e.  ~P U. A )
1413rexlimiva 3028 . . . 4  |-  ( E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x  ->  y  e.  ~P U. A )
1514abssi 3677 . . 3  |-  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_  ~P U. A
16 uniexg 6955 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
17 pwexg 4850 . . . 4  |-  ( U. A  e.  _V  ->  ~P
U. A  e.  _V )
1816, 17syl 17 . . 3  |-  ( A  e.  V  ->  ~P U. A  e.  _V )
19 ssexg 4804 . . 3  |-  ( ( { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_ 
~P U. A  /\  ~P U. A  e.  _V )  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
2015, 18, 19sylancr 695 . 2  |-  ( A  e.  V  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
21 pweq 4161 . . . . . 6  |-  ( z  =  A  ->  ~P z  =  ~P A
)
2221ineq1d 3813 . . . . 5  |-  ( z  =  A  ->  ( ~P z  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
2322rexeqdv 3145 . . . 4  |-  ( z  =  A  ->  ( E. x  e.  ( ~P z  i^i  Fin )
y  =  |^| x  <->  E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x
) )
2423abbidv 2741 . . 3  |-  ( z  =  A  ->  { y  |  E. x  e.  ( ~P z  i^i 
Fin ) y  = 
|^| x }  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
25 df-fi 8317 . . 3  |-  fi  =  ( z  e.  _V  |->  { y  |  E. x  e.  ( ~P z  i^i  Fin ) y  =  |^| x }
)
2624, 25fvmptg 6280 . 2  |-  ( ( A  e.  _V  /\  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )  ->  ( fi `  A )  =  {
y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x } )
271, 20, 26syl2anc 693 1  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   ` cfv 5888   Fincfn 7955   ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-fi 8317
This theorem is referenced by:  elfi  8319  fi0  8326
  Copyright terms: Public domain W3C validator