MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fi0 Structured version   Visualization version   Unicode version

Theorem fi0 8326
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
fi0  |-  ( fi
`  (/) )  =  (/)

Proof of Theorem fi0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . 3  |-  (/)  e.  _V
2 fival 8318 . . 3  |-  ( (/)  e.  _V  ->  ( fi `  (/) )  =  {
y  |  E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x } )
31, 2ax-mp 5 . 2  |-  ( fi
`  (/) )  =  {
y  |  E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x }
4 vprc 4796 . . . 4  |-  -.  _V  e.  _V
5 id 22 . . . . . . 7  |-  ( y  =  |^| x  -> 
y  =  |^| x
)
6 inss1 3833 . . . . . . . . . . 11  |-  ( ~P (/)  i^i  Fin )  C_  ~P (/)
76sseli 3599 . . . . . . . . . 10  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  x  e.  ~P (/) )
8 elpwi 4168 . . . . . . . . . 10  |-  ( x  e.  ~P (/)  ->  x  C_  (/) )
9 ss0 3974 . . . . . . . . . 10  |-  ( x 
C_  (/)  ->  x  =  (/) )
107, 8, 93syl 18 . . . . . . . . 9  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  x  =  (/) )
1110inteqd 4480 . . . . . . . 8  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  |^| x  =  |^| (/) )
12 int0 4490 . . . . . . . 8  |-  |^| (/)  =  _V
1311, 12syl6eq 2672 . . . . . . 7  |-  ( x  e.  ( ~P (/)  i^i  Fin )  ->  |^| x  =  _V )
145, 13sylan9eqr 2678 . . . . . 6  |-  ( ( x  e.  ( ~P (/)  i^i  Fin )  /\  y  =  |^| x )  ->  y  =  _V )
1514rexlimiva 3028 . . . . 5  |-  ( E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x  -> 
y  =  _V )
16 vex 3203 . . . . 5  |-  y  e. 
_V
1715, 16syl6eqelr 2710 . . . 4  |-  ( E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x  ->  _V  e.  _V )
184, 17mto 188 . . 3  |-  -.  E. x  e.  ( ~P (/) 
i^i  Fin ) y  = 
|^| x
1918abf 3978 . 2  |-  { y  |  E. x  e.  ( ~P (/)  i^i  Fin ) y  =  |^| x }  =  (/)
203, 19eqtri 2644 1  |-  ( fi
`  (/) )  =  (/)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   ` cfv 5888   Fincfn 7955   ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-fi 8317
This theorem is referenced by:  fieq0  8327  firest  16093  restbas  20962
  Copyright terms: Public domain W3C validator